| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ncoprmgcdgt1b |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ↔ 1 < ( 𝐴 gcd 𝐵 ) ) ) |
| 2 |
1
|
bicomd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 1 < ( 𝐴 gcd 𝐵 ) ↔ ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) |
| 3 |
2
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → ( 1 < ( 𝐴 gcd 𝐵 ) ↔ ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) |
| 4 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℕ ) |
| 5 |
|
eluzelz |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) → 𝑖 ∈ ℤ ) |
| 6 |
4 5
|
anim12ci |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑖 ∈ ℤ ∧ 𝐴 ∈ ℕ ) ) |
| 7 |
|
dvdsle |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝐴 ∈ ℕ ) → ( 𝑖 ∥ 𝐴 → 𝑖 ≤ 𝐴 ) ) |
| 8 |
6 7
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑖 ∥ 𝐴 → 𝑖 ≤ 𝐴 ) ) |
| 9 |
|
nnre |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) |
| 10 |
|
nnre |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) |
| 11 |
|
eluzelre |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) → 𝑖 ∈ ℝ ) |
| 12 |
9 10 11
|
3anim123i |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑖 ∈ ℝ ) ) |
| 13 |
|
3anrot |
⊢ ( ( 𝑖 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ↔ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑖 ∈ ℝ ) ) |
| 14 |
12 13
|
sylibr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑖 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 15 |
|
lelttr |
⊢ ( ( 𝑖 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝑖 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) → 𝑖 < 𝐵 ) ) |
| 16 |
14 15
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑖 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) → 𝑖 < 𝐵 ) ) |
| 17 |
16
|
expcomd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐴 < 𝐵 → ( 𝑖 ≤ 𝐴 → 𝑖 < 𝐵 ) ) ) |
| 18 |
17
|
3exp |
⊢ ( 𝐴 ∈ ℕ → ( 𝐵 ∈ ℕ → ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 < 𝐵 → ( 𝑖 ≤ 𝐴 → 𝑖 < 𝐵 ) ) ) ) ) |
| 19 |
18
|
com34 |
⊢ ( 𝐴 ∈ ℕ → ( 𝐵 ∈ ℕ → ( 𝐴 < 𝐵 → ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑖 ≤ 𝐴 → 𝑖 < 𝐵 ) ) ) ) ) |
| 20 |
19
|
3imp1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑖 ≤ 𝐴 → 𝑖 < 𝐵 ) ) |
| 21 |
20
|
imp |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑖 ≤ 𝐴 ) → 𝑖 < 𝐵 ) |
| 22 |
|
nnz |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) |
| 23 |
22
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℤ ) |
| 24 |
23 5
|
anim12ci |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑖 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
| 25 |
24
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑖 ≤ 𝐴 ) → ( 𝑖 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
| 26 |
|
zltlem1 |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑖 < 𝐵 ↔ 𝑖 ≤ ( 𝐵 − 1 ) ) ) |
| 27 |
25 26
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑖 ≤ 𝐴 ) → ( 𝑖 < 𝐵 ↔ 𝑖 ≤ ( 𝐵 − 1 ) ) ) |
| 28 |
21 27
|
mpbid |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑖 ≤ 𝐴 ) → 𝑖 ≤ ( 𝐵 − 1 ) ) |
| 29 |
28
|
ex |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑖 ≤ 𝐴 → 𝑖 ≤ ( 𝐵 − 1 ) ) ) |
| 30 |
8 29
|
syldc |
⊢ ( 𝑖 ∥ 𝐴 → ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑖 ≤ ( 𝐵 − 1 ) ) ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑖 ≤ ( 𝐵 − 1 ) ) ) |
| 32 |
31
|
impcom |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → 𝑖 ≤ ( 𝐵 − 1 ) ) |
| 33 |
|
peano2zm |
⊢ ( 𝐵 ∈ ℤ → ( 𝐵 − 1 ) ∈ ℤ ) |
| 34 |
22 33
|
syl |
⊢ ( 𝐵 ∈ ℕ → ( 𝐵 − 1 ) ∈ ℤ ) |
| 35 |
34
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → ( 𝐵 − 1 ) ∈ ℤ ) |
| 36 |
35
|
anim1ci |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝐵 − 1 ) ∈ ℤ ) ) |
| 37 |
36
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝐵 − 1 ) ∈ ℤ ) ) |
| 38 |
|
elfz5 |
⊢ ( ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝐵 − 1 ) ∈ ℤ ) → ( 𝑖 ∈ ( 2 ... ( 𝐵 − 1 ) ) ↔ 𝑖 ≤ ( 𝐵 − 1 ) ) ) |
| 39 |
37 38
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ( 𝑖 ∈ ( 2 ... ( 𝐵 − 1 ) ) ↔ 𝑖 ≤ ( 𝐵 − 1 ) ) ) |
| 40 |
32 39
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → 𝑖 ∈ ( 2 ... ( 𝐵 − 1 ) ) ) |
| 41 |
|
breq1 |
⊢ ( 𝑗 = 𝑖 → ( 𝑗 ∥ 𝐵 ↔ 𝑖 ∥ 𝐵 ) ) |
| 42 |
41
|
adantl |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ∧ 𝑗 = 𝑖 ) → ( 𝑗 ∥ 𝐵 ↔ 𝑖 ∥ 𝐵 ) ) |
| 43 |
|
simprr |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → 𝑖 ∥ 𝐵 ) |
| 44 |
40 42 43
|
rspcedvd |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ∃ 𝑗 ∈ ( 2 ... ( 𝐵 − 1 ) ) 𝑗 ∥ 𝐵 ) |
| 45 |
|
rexnal |
⊢ ( ∃ 𝑗 ∈ ( 2 ... ( 𝐵 − 1 ) ) ¬ ¬ 𝑗 ∥ 𝐵 ↔ ¬ ∀ 𝑗 ∈ ( 2 ... ( 𝐵 − 1 ) ) ¬ 𝑗 ∥ 𝐵 ) |
| 46 |
|
notnotb |
⊢ ( 𝑗 ∥ 𝐵 ↔ ¬ ¬ 𝑗 ∥ 𝐵 ) |
| 47 |
46
|
bicomi |
⊢ ( ¬ ¬ 𝑗 ∥ 𝐵 ↔ 𝑗 ∥ 𝐵 ) |
| 48 |
47
|
rexbii |
⊢ ( ∃ 𝑗 ∈ ( 2 ... ( 𝐵 − 1 ) ) ¬ ¬ 𝑗 ∥ 𝐵 ↔ ∃ 𝑗 ∈ ( 2 ... ( 𝐵 − 1 ) ) 𝑗 ∥ 𝐵 ) |
| 49 |
45 48
|
bitr3i |
⊢ ( ¬ ∀ 𝑗 ∈ ( 2 ... ( 𝐵 − 1 ) ) ¬ 𝑗 ∥ 𝐵 ↔ ∃ 𝑗 ∈ ( 2 ... ( 𝐵 − 1 ) ) 𝑗 ∥ 𝐵 ) |
| 50 |
44 49
|
sylibr |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ¬ ∀ 𝑗 ∈ ( 2 ... ( 𝐵 − 1 ) ) ¬ 𝑗 ∥ 𝐵 ) |
| 51 |
50
|
olcd |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ( ¬ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∨ ¬ ∀ 𝑗 ∈ ( 2 ... ( 𝐵 − 1 ) ) ¬ 𝑗 ∥ 𝐵 ) ) |
| 52 |
|
df-nel |
⊢ ( 𝐵 ∉ ℙ ↔ ¬ 𝐵 ∈ ℙ ) |
| 53 |
|
ianor |
⊢ ( ¬ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑗 ∈ ( 2 ... ( 𝐵 − 1 ) ) ¬ 𝑗 ∥ 𝐵 ) ↔ ( ¬ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∨ ¬ ∀ 𝑗 ∈ ( 2 ... ( 𝐵 − 1 ) ) ¬ 𝑗 ∥ 𝐵 ) ) |
| 54 |
|
isprm3 |
⊢ ( 𝐵 ∈ ℙ ↔ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑗 ∈ ( 2 ... ( 𝐵 − 1 ) ) ¬ 𝑗 ∥ 𝐵 ) ) |
| 55 |
53 54
|
xchnxbir |
⊢ ( ¬ 𝐵 ∈ ℙ ↔ ( ¬ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∨ ¬ ∀ 𝑗 ∈ ( 2 ... ( 𝐵 − 1 ) ) ¬ 𝑗 ∥ 𝐵 ) ) |
| 56 |
52 55
|
bitri |
⊢ ( 𝐵 ∉ ℙ ↔ ( ¬ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∨ ¬ ∀ 𝑗 ∈ ( 2 ... ( 𝐵 − 1 ) ) ¬ 𝑗 ∥ 𝐵 ) ) |
| 57 |
51 56
|
sylibr |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → 𝐵 ∉ ℙ ) |
| 58 |
57
|
rexlimdva2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → ( ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → 𝐵 ∉ ℙ ) ) |
| 59 |
3 58
|
sylbid |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → ( 1 < ( 𝐴 gcd 𝐵 ) → 𝐵 ∉ ℙ ) ) |