| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ncvr1.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							ncvr1.u | 
							⊢  1   =  ( 1. ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							ncvr1.c | 
							⊢ 𝐶  =  (  ⋖  ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								1 4 2
							 | 
							ople1 | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  →  𝑋 ( le ‘ 𝐾 )  1  )  | 
						
						
							| 6 | 
							
								
							 | 
							opposet | 
							⊢ ( 𝐾  ∈  OP  →  𝐾  ∈  Poset )  | 
						
						
							| 7 | 
							
								6
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  ∧   1  ( lt ‘ 𝐾 ) 𝑋 )  →  𝐾  ∈  Poset )  | 
						
						
							| 8 | 
							
								1 2
							 | 
							op1cl | 
							⊢ ( 𝐾  ∈  OP  →   1   ∈  𝐵 )  | 
						
						
							| 9 | 
							
								8
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  ∧   1  ( lt ‘ 𝐾 ) 𝑋 )  →   1   ∈  𝐵 )  | 
						
						
							| 10 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  ∧   1  ( lt ‘ 𝐾 ) 𝑋 )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 11 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  ∧   1  ( lt ‘ 𝐾 ) 𝑋 )  →   1  ( lt ‘ 𝐾 ) 𝑋 )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							⊢ ( lt ‘ 𝐾 )  =  ( lt ‘ 𝐾 )  | 
						
						
							| 13 | 
							
								1 4 12
							 | 
							pltnle | 
							⊢ ( ( ( 𝐾  ∈  Poset  ∧   1   ∈  𝐵  ∧  𝑋  ∈  𝐵 )  ∧   1  ( lt ‘ 𝐾 ) 𝑋 )  →  ¬  𝑋 ( le ‘ 𝐾 )  1  )  | 
						
						
							| 14 | 
							
								7 9 10 11 13
							 | 
							syl31anc | 
							⊢ ( ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  ∧   1  ( lt ‘ 𝐾 ) 𝑋 )  →  ¬  𝑋 ( le ‘ 𝐾 )  1  )  | 
						
						
							| 15 | 
							
								14
							 | 
							ex | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  →  (  1  ( lt ‘ 𝐾 ) 𝑋  →  ¬  𝑋 ( le ‘ 𝐾 )  1  ) )  | 
						
						
							| 16 | 
							
								5 15
							 | 
							mt2d | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  →  ¬   1  ( lt ‘ 𝐾 ) 𝑋 )  | 
						
						
							| 17 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  ∧   1  𝐶 𝑋 )  →  𝐾  ∈  OP )  | 
						
						
							| 18 | 
							
								8
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  ∧   1  𝐶 𝑋 )  →   1   ∈  𝐵 )  | 
						
						
							| 19 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  ∧   1  𝐶 𝑋 )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 20 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  ∧   1  𝐶 𝑋 )  →   1  𝐶 𝑋 )  | 
						
						
							| 21 | 
							
								1 12 3
							 | 
							cvrlt | 
							⊢ ( ( ( 𝐾  ∈  OP  ∧   1   ∈  𝐵  ∧  𝑋  ∈  𝐵 )  ∧   1  𝐶 𝑋 )  →   1  ( lt ‘ 𝐾 ) 𝑋 )  | 
						
						
							| 22 | 
							
								17 18 19 20 21
							 | 
							syl31anc | 
							⊢ ( ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  ∧   1  𝐶 𝑋 )  →   1  ( lt ‘ 𝐾 ) 𝑋 )  | 
						
						
							| 23 | 
							
								16 22
							 | 
							mtand | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  →  ¬   1  𝐶 𝑋 )  |