Step |
Hyp |
Ref |
Expression |
1 |
|
ncvr1.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
ncvr1.u |
⊢ 1 = ( 1. ‘ 𝐾 ) |
3 |
|
ncvr1.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
4 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
5 |
1 4 2
|
ople1 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ( le ‘ 𝐾 ) 1 ) |
6 |
|
opposet |
⊢ ( 𝐾 ∈ OP → 𝐾 ∈ Poset ) |
7 |
6
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 ( lt ‘ 𝐾 ) 𝑋 ) → 𝐾 ∈ Poset ) |
8 |
1 2
|
op1cl |
⊢ ( 𝐾 ∈ OP → 1 ∈ 𝐵 ) |
9 |
8
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 ( lt ‘ 𝐾 ) 𝑋 ) → 1 ∈ 𝐵 ) |
10 |
|
simplr |
⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 ( lt ‘ 𝐾 ) 𝑋 ) → 𝑋 ∈ 𝐵 ) |
11 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 ( lt ‘ 𝐾 ) 𝑋 ) → 1 ( lt ‘ 𝐾 ) 𝑋 ) |
12 |
|
eqid |
⊢ ( lt ‘ 𝐾 ) = ( lt ‘ 𝐾 ) |
13 |
1 4 12
|
pltnle |
⊢ ( ( ( 𝐾 ∈ Poset ∧ 1 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 1 ( lt ‘ 𝐾 ) 𝑋 ) → ¬ 𝑋 ( le ‘ 𝐾 ) 1 ) |
14 |
7 9 10 11 13
|
syl31anc |
⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 ( lt ‘ 𝐾 ) 𝑋 ) → ¬ 𝑋 ( le ‘ 𝐾 ) 1 ) |
15 |
14
|
ex |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( 1 ( lt ‘ 𝐾 ) 𝑋 → ¬ 𝑋 ( le ‘ 𝐾 ) 1 ) ) |
16 |
5 15
|
mt2d |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ¬ 1 ( lt ‘ 𝐾 ) 𝑋 ) |
17 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 𝐶 𝑋 ) → 𝐾 ∈ OP ) |
18 |
8
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 𝐶 𝑋 ) → 1 ∈ 𝐵 ) |
19 |
|
simplr |
⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 𝐶 𝑋 ) → 𝑋 ∈ 𝐵 ) |
20 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 𝐶 𝑋 ) → 1 𝐶 𝑋 ) |
21 |
1 12 3
|
cvrlt |
⊢ ( ( ( 𝐾 ∈ OP ∧ 1 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 1 𝐶 𝑋 ) → 1 ( lt ‘ 𝐾 ) 𝑋 ) |
22 |
17 18 19 20 21
|
syl31anc |
⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 𝐶 𝑋 ) → 1 ( lt ‘ 𝐾 ) 𝑋 ) |
23 |
16 22
|
mtand |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ¬ 1 𝐶 𝑋 ) |