Description: A lemma for proving conditionless ZFC axioms. (Contributed by NM, 2-Jan-2002)
Ref | Expression | ||
---|---|---|---|
Assertion | nd3 | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑧 𝑥 ∈ 𝑦 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirrv | ⊢ ¬ 𝑥 ∈ 𝑥 | |
2 | elequ2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑥 ↔ 𝑥 ∈ 𝑦 ) ) | |
3 | 1 2 | mtbii | ⊢ ( 𝑥 = 𝑦 → ¬ 𝑥 ∈ 𝑦 ) |
4 | 3 | sps | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ¬ 𝑥 ∈ 𝑦 ) |
5 | sp | ⊢ ( ∀ 𝑧 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑦 ) | |
6 | 4 5 | nsyl | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑧 𝑥 ∈ 𝑦 ) |