Description: A lemma for proving conditionless ZFC axioms. (Contributed by NM, 2-Jan-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nd3 | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑧 𝑥 ∈ 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elirrv | ⊢ ¬ 𝑥 ∈ 𝑥 | |
| 2 | elequ2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑥 ↔ 𝑥 ∈ 𝑦 ) ) | |
| 3 | 1 2 | mtbii | ⊢ ( 𝑥 = 𝑦 → ¬ 𝑥 ∈ 𝑦 ) |
| 4 | 3 | sps | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ¬ 𝑥 ∈ 𝑦 ) |
| 5 | sp | ⊢ ( ∀ 𝑧 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑦 ) | |
| 6 | 4 5 | nsyl | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑧 𝑥 ∈ 𝑦 ) |