Metamath Proof Explorer


Theorem nd3

Description: A lemma for proving conditionless ZFC axioms. (Contributed by NM, 2-Jan-2002)

Ref Expression
Assertion nd3 ( ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑧 𝑥𝑦 )

Proof

Step Hyp Ref Expression
1 elirrv ¬ 𝑥𝑥
2 elequ2 ( 𝑥 = 𝑦 → ( 𝑥𝑥𝑥𝑦 ) )
3 1 2 mtbii ( 𝑥 = 𝑦 → ¬ 𝑥𝑦 )
4 3 sps ( ∀ 𝑥 𝑥 = 𝑦 → ¬ 𝑥𝑦 )
5 sp ( ∀ 𝑧 𝑥𝑦𝑥𝑦 )
6 4 5 nsyl ( ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑧 𝑥𝑦 )