Metamath Proof Explorer


Theorem ndisj

Description: Express that an intersection is not empty. (Contributed by RP, 16-Apr-2020)

Ref Expression
Assertion ndisj ( ( 𝐴𝐵 ) ≠ ∅ ↔ ∃ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )

Proof

Step Hyp Ref Expression
1 n0 ( ( 𝐴𝐵 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐴𝐵 ) )
2 elin ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴𝑥𝐵 ) )
3 2 exbii ( ∃ 𝑥 𝑥 ∈ ( 𝐴𝐵 ) ↔ ∃ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
4 1 3 bitri ( ( 𝐴𝐵 ) ≠ ∅ ↔ ∃ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )