| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ndisj2.1 | 
							⊢ ( 𝑥  =  𝑦  →  𝐵  =  𝐶 )  | 
						
						
							| 2 | 
							
								1
							 | 
							disjor | 
							⊢ ( Disj  𝑥  ∈  𝐴 𝐵  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  =  𝑦  ∨  ( 𝐵  ∩  𝐶 )  =  ∅ ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							notbii | 
							⊢ ( ¬  Disj  𝑥  ∈  𝐴 𝐵  ↔  ¬  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  =  𝑦  ∨  ( 𝐵  ∩  𝐶 )  =  ∅ ) )  | 
						
						
							| 4 | 
							
								
							 | 
							rexnal | 
							⊢ ( ∃ 𝑥  ∈  𝐴 ¬  ∀ 𝑦  ∈  𝐴 ( 𝑥  =  𝑦  ∨  ( 𝐵  ∩  𝐶 )  =  ∅ )  ↔  ¬  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  =  𝑦  ∨  ( 𝐵  ∩  𝐶 )  =  ∅ ) )  | 
						
						
							| 5 | 
							
								
							 | 
							rexnal | 
							⊢ ( ∃ 𝑦  ∈  𝐴 ¬  ( 𝑥  =  𝑦  ∨  ( 𝐵  ∩  𝐶 )  =  ∅ )  ↔  ¬  ∀ 𝑦  ∈  𝐴 ( 𝑥  =  𝑦  ∨  ( 𝐵  ∩  𝐶 )  =  ∅ ) )  | 
						
						
							| 6 | 
							
								
							 | 
							ioran | 
							⊢ ( ¬  ( 𝑥  =  𝑦  ∨  ( 𝐵  ∩  𝐶 )  =  ∅ )  ↔  ( ¬  𝑥  =  𝑦  ∧  ¬  ( 𝐵  ∩  𝐶 )  =  ∅ ) )  | 
						
						
							| 7 | 
							
								
							 | 
							df-ne | 
							⊢ ( 𝑥  ≠  𝑦  ↔  ¬  𝑥  =  𝑦 )  | 
						
						
							| 8 | 
							
								
							 | 
							df-ne | 
							⊢ ( ( 𝐵  ∩  𝐶 )  ≠  ∅  ↔  ¬  ( 𝐵  ∩  𝐶 )  =  ∅ )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							anbi12i | 
							⊢ ( ( 𝑥  ≠  𝑦  ∧  ( 𝐵  ∩  𝐶 )  ≠  ∅ )  ↔  ( ¬  𝑥  =  𝑦  ∧  ¬  ( 𝐵  ∩  𝐶 )  =  ∅ ) )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							bitr4i | 
							⊢ ( ¬  ( 𝑥  =  𝑦  ∨  ( 𝐵  ∩  𝐶 )  =  ∅ )  ↔  ( 𝑥  ≠  𝑦  ∧  ( 𝐵  ∩  𝐶 )  ≠  ∅ ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							rexbii | 
							⊢ ( ∃ 𝑦  ∈  𝐴 ¬  ( 𝑥  =  𝑦  ∨  ( 𝐵  ∩  𝐶 )  =  ∅ )  ↔  ∃ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  ∧  ( 𝐵  ∩  𝐶 )  ≠  ∅ ) )  | 
						
						
							| 12 | 
							
								5 11
							 | 
							bitr3i | 
							⊢ ( ¬  ∀ 𝑦  ∈  𝐴 ( 𝑥  =  𝑦  ∨  ( 𝐵  ∩  𝐶 )  =  ∅ )  ↔  ∃ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  ∧  ( 𝐵  ∩  𝐶 )  ≠  ∅ ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							rexbii | 
							⊢ ( ∃ 𝑥  ∈  𝐴 ¬  ∀ 𝑦  ∈  𝐴 ( 𝑥  =  𝑦  ∨  ( 𝐵  ∩  𝐶 )  =  ∅ )  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  ∧  ( 𝐵  ∩  𝐶 )  ≠  ∅ ) )  | 
						
						
							| 14 | 
							
								3 4 13
							 | 
							3bitr2i | 
							⊢ ( ¬  Disj  𝑥  ∈  𝐴 𝐵  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  ∧  ( 𝐵  ∩  𝐶 )  ≠  ∅ ) )  |