Metamath Proof Explorer


Theorem ndmioo

Description: The open interval function's value is empty outside of its domain. (Contributed by NM, 21-Jun-2007) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion ndmioo ( ¬ ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) = ∅ )

Proof

Step Hyp Ref Expression
1 df-ioo (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧𝑧 < 𝑦 ) } )
2 1 ixxf (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ*
3 2 fdmi dom (,) = ( ℝ* × ℝ* )
4 3 ndmov ( ¬ ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) = ∅ )