| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ndmov.1 |
⊢ dom 𝐹 = ( 𝑆 × 𝑆 ) |
| 2 |
|
ndmov.5 |
⊢ ¬ ∅ ∈ 𝑆 |
| 3 |
|
ndmov.6 |
⊢ dom 𝐺 = ( 𝑆 × 𝑆 ) |
| 4 |
1 2
|
ndmovrcl |
⊢ ( ( 𝐵 𝐹 𝐶 ) ∈ 𝑆 → ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
| 5 |
4
|
anim2i |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ ( 𝐵 𝐹 𝐶 ) ∈ 𝑆 ) → ( 𝐴 ∈ 𝑆 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
| 6 |
|
3anass |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ↔ ( 𝐴 ∈ 𝑆 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
| 7 |
5 6
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ ( 𝐵 𝐹 𝐶 ) ∈ 𝑆 ) → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
| 8 |
3
|
ndmov |
⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ ( 𝐵 𝐹 𝐶 ) ∈ 𝑆 ) → ( 𝐴 𝐺 ( 𝐵 𝐹 𝐶 ) ) = ∅ ) |
| 9 |
7 8
|
nsyl5 |
⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( 𝐴 𝐺 ( 𝐵 𝐹 𝐶 ) ) = ∅ ) |
| 10 |
3 2
|
ndmovrcl |
⊢ ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑆 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) |
| 11 |
3 2
|
ndmovrcl |
⊢ ( ( 𝐴 𝐺 𝐶 ) ∈ 𝑆 → ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
| 12 |
10 11
|
anim12i |
⊢ ( ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑆 ∧ ( 𝐴 𝐺 𝐶 ) ∈ 𝑆 ) → ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
| 13 |
|
anandi3 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ↔ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
| 14 |
12 13
|
sylibr |
⊢ ( ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑆 ∧ ( 𝐴 𝐺 𝐶 ) ∈ 𝑆 ) → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
| 15 |
1
|
ndmov |
⊢ ( ¬ ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑆 ∧ ( 𝐴 𝐺 𝐶 ) ∈ 𝑆 ) → ( ( 𝐴 𝐺 𝐵 ) 𝐹 ( 𝐴 𝐺 𝐶 ) ) = ∅ ) |
| 16 |
14 15
|
nsyl5 |
⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( ( 𝐴 𝐺 𝐵 ) 𝐹 ( 𝐴 𝐺 𝐶 ) ) = ∅ ) |
| 17 |
9 16
|
eqtr4d |
⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( 𝐴 𝐺 ( 𝐵 𝐹 𝐶 ) ) = ( ( 𝐴 𝐺 𝐵 ) 𝐹 ( 𝐴 𝐺 𝐶 ) ) ) |