Metamath Proof Explorer


Theorem ndmovg

Description: The value of an operation outside its domain. (Contributed by NM, 28-Mar-2008)

Ref Expression
Assertion ndmovg ( ( dom 𝐹 = ( 𝑅 × 𝑆 ) ∧ ¬ ( 𝐴𝑅𝐵𝑆 ) ) → ( 𝐴 𝐹 𝐵 ) = ∅ )

Proof

Step Hyp Ref Expression
1 df-ov ( 𝐴 𝐹 𝐵 ) = ( 𝐹 ‘ ⟨ 𝐴 , 𝐵 ⟩ )
2 eleq2 ( dom 𝐹 = ( 𝑅 × 𝑆 ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ dom 𝐹 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑅 × 𝑆 ) ) )
3 opelxp ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑅 × 𝑆 ) ↔ ( 𝐴𝑅𝐵𝑆 ) )
4 2 3 bitrdi ( dom 𝐹 = ( 𝑅 × 𝑆 ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ dom 𝐹 ↔ ( 𝐴𝑅𝐵𝑆 ) ) )
5 4 notbid ( dom 𝐹 = ( 𝑅 × 𝑆 ) → ( ¬ ⟨ 𝐴 , 𝐵 ⟩ ∈ dom 𝐹 ↔ ¬ ( 𝐴𝑅𝐵𝑆 ) ) )
6 ndmfv ( ¬ ⟨ 𝐴 , 𝐵 ⟩ ∈ dom 𝐹 → ( 𝐹 ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = ∅ )
7 5 6 syl6bir ( dom 𝐹 = ( 𝑅 × 𝑆 ) → ( ¬ ( 𝐴𝑅𝐵𝑆 ) → ( 𝐹 ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = ∅ ) )
8 7 imp ( ( dom 𝐹 = ( 𝑅 × 𝑆 ) ∧ ¬ ( 𝐴𝑅𝐵𝑆 ) ) → ( 𝐹 ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = ∅ )
9 1 8 eqtrid ( ( dom 𝐹 = ( 𝑅 × 𝑆 ) ∧ ¬ ( 𝐴𝑅𝐵𝑆 ) ) → ( 𝐴 𝐹 𝐵 ) = ∅ )