Step |
Hyp |
Ref |
Expression |
1 |
|
df-ov |
⊢ ( 𝐴 𝐹 𝐵 ) = ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) |
2 |
|
eleq2 |
⊢ ( dom 𝐹 = ( 𝑅 × 𝑆 ) → ( 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ↔ 〈 𝐴 , 𝐵 〉 ∈ ( 𝑅 × 𝑆 ) ) ) |
3 |
|
opelxp |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑅 × 𝑆 ) ↔ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) |
4 |
2 3
|
bitrdi |
⊢ ( dom 𝐹 = ( 𝑅 × 𝑆 ) → ( 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ↔ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) ) |
5 |
4
|
notbid |
⊢ ( dom 𝐹 = ( 𝑅 × 𝑆 ) → ( ¬ 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ↔ ¬ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) ) |
6 |
|
ndmfv |
⊢ ( ¬ 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 → ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) = ∅ ) |
7 |
5 6
|
syl6bir |
⊢ ( dom 𝐹 = ( 𝑅 × 𝑆 ) → ( ¬ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) = ∅ ) ) |
8 |
7
|
imp |
⊢ ( ( dom 𝐹 = ( 𝑅 × 𝑆 ) ∧ ¬ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) = ∅ ) |
9 |
1 8
|
eqtrid |
⊢ ( ( dom 𝐹 = ( 𝑅 × 𝑆 ) ∧ ¬ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝐴 𝐹 𝐵 ) = ∅ ) |