| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ndmov.1 |
⊢ dom 𝐹 = ( 𝑆 × 𝑆 ) |
| 2 |
|
ndmovord.4 |
⊢ 𝑅 ⊆ ( 𝑆 × 𝑆 ) |
| 3 |
|
ndmovord.5 |
⊢ ¬ ∅ ∈ 𝑆 |
| 4 |
|
ndmovord.6 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) |
| 5 |
4
|
3expia |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐶 ∈ 𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) ) |
| 6 |
2
|
brel |
⊢ ( 𝐴 𝑅 𝐵 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) |
| 7 |
2
|
brel |
⊢ ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) → ( ( 𝐶 𝐹 𝐴 ) ∈ 𝑆 ∧ ( 𝐶 𝐹 𝐵 ) ∈ 𝑆 ) ) |
| 8 |
1 3
|
ndmovrcl |
⊢ ( ( 𝐶 𝐹 𝐴 ) ∈ 𝑆 → ( 𝐶 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) ) |
| 9 |
8
|
simprd |
⊢ ( ( 𝐶 𝐹 𝐴 ) ∈ 𝑆 → 𝐴 ∈ 𝑆 ) |
| 10 |
1 3
|
ndmovrcl |
⊢ ( ( 𝐶 𝐹 𝐵 ) ∈ 𝑆 → ( 𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) |
| 11 |
10
|
simprd |
⊢ ( ( 𝐶 𝐹 𝐵 ) ∈ 𝑆 → 𝐵 ∈ 𝑆 ) |
| 12 |
9 11
|
anim12i |
⊢ ( ( ( 𝐶 𝐹 𝐴 ) ∈ 𝑆 ∧ ( 𝐶 𝐹 𝐵 ) ∈ 𝑆 ) → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) |
| 13 |
7 12
|
syl |
⊢ ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) |
| 14 |
6 13
|
pm5.21ni |
⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) |
| 15 |
14
|
a1d |
⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐶 ∈ 𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) ) |
| 16 |
5 15
|
pm2.61i |
⊢ ( 𝐶 ∈ 𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) |