Metamath Proof Explorer


Theorem ndmovord

Description: Elimination of redundant antecedents in an ordering law. (Contributed by NM, 7-Mar-1996)

Ref Expression
Hypotheses ndmov.1 dom 𝐹 = ( 𝑆 × 𝑆 )
ndmovord.4 𝑅 ⊆ ( 𝑆 × 𝑆 )
ndmovord.5 ¬ ∅ ∈ 𝑆
ndmovord.6 ( ( 𝐴𝑆𝐵𝑆𝐶𝑆 ) → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) )
Assertion ndmovord ( 𝐶𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 ndmov.1 dom 𝐹 = ( 𝑆 × 𝑆 )
2 ndmovord.4 𝑅 ⊆ ( 𝑆 × 𝑆 )
3 ndmovord.5 ¬ ∅ ∈ 𝑆
4 ndmovord.6 ( ( 𝐴𝑆𝐵𝑆𝐶𝑆 ) → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) )
5 4 3expia ( ( 𝐴𝑆𝐵𝑆 ) → ( 𝐶𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) )
6 2 brel ( 𝐴 𝑅 𝐵 → ( 𝐴𝑆𝐵𝑆 ) )
7 2 brel ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) → ( ( 𝐶 𝐹 𝐴 ) ∈ 𝑆 ∧ ( 𝐶 𝐹 𝐵 ) ∈ 𝑆 ) )
8 1 3 ndmovrcl ( ( 𝐶 𝐹 𝐴 ) ∈ 𝑆 → ( 𝐶𝑆𝐴𝑆 ) )
9 8 simprd ( ( 𝐶 𝐹 𝐴 ) ∈ 𝑆𝐴𝑆 )
10 1 3 ndmovrcl ( ( 𝐶 𝐹 𝐵 ) ∈ 𝑆 → ( 𝐶𝑆𝐵𝑆 ) )
11 10 simprd ( ( 𝐶 𝐹 𝐵 ) ∈ 𝑆𝐵𝑆 )
12 9 11 anim12i ( ( ( 𝐶 𝐹 𝐴 ) ∈ 𝑆 ∧ ( 𝐶 𝐹 𝐵 ) ∈ 𝑆 ) → ( 𝐴𝑆𝐵𝑆 ) )
13 7 12 syl ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) → ( 𝐴𝑆𝐵𝑆 ) )
14 6 13 pm5.21ni ( ¬ ( 𝐴𝑆𝐵𝑆 ) → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) )
15 14 a1d ( ¬ ( 𝐴𝑆𝐵𝑆 ) → ( 𝐶𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) )
16 5 15 pm2.61i ( 𝐶𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) )