Step |
Hyp |
Ref |
Expression |
1 |
|
ndmovordi.2 |
⊢ dom 𝐹 = ( 𝑆 × 𝑆 ) |
2 |
|
ndmovordi.4 |
⊢ 𝑅 ⊆ ( 𝑆 × 𝑆 ) |
3 |
|
ndmovordi.5 |
⊢ ¬ ∅ ∈ 𝑆 |
4 |
|
ndmovordi.6 |
⊢ ( 𝐶 ∈ 𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) |
5 |
2
|
brel |
⊢ ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) → ( ( 𝐶 𝐹 𝐴 ) ∈ 𝑆 ∧ ( 𝐶 𝐹 𝐵 ) ∈ 𝑆 ) ) |
6 |
5
|
simpld |
⊢ ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) → ( 𝐶 𝐹 𝐴 ) ∈ 𝑆 ) |
7 |
1 3
|
ndmovrcl |
⊢ ( ( 𝐶 𝐹 𝐴 ) ∈ 𝑆 → ( 𝐶 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) ) |
8 |
7
|
simpld |
⊢ ( ( 𝐶 𝐹 𝐴 ) ∈ 𝑆 → 𝐶 ∈ 𝑆 ) |
9 |
6 8
|
syl |
⊢ ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) → 𝐶 ∈ 𝑆 ) |
10 |
4
|
biimprd |
⊢ ( 𝐶 ∈ 𝑆 → ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) → 𝐴 𝑅 𝐵 ) ) |
11 |
9 10
|
mpcom |
⊢ ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) → 𝐴 𝑅 𝐵 ) |