Metamath Proof Explorer


Theorem ndmovordi

Description: Elimination of redundant antecedent in an ordering law. (Contributed by NM, 25-Jun-1998)

Ref Expression
Hypotheses ndmovordi.2 dom 𝐹 = ( 𝑆 × 𝑆 )
ndmovordi.4 𝑅 ⊆ ( 𝑆 × 𝑆 )
ndmovordi.5 ¬ ∅ ∈ 𝑆
ndmovordi.6 ( 𝐶𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) )
Assertion ndmovordi ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) → 𝐴 𝑅 𝐵 )

Proof

Step Hyp Ref Expression
1 ndmovordi.2 dom 𝐹 = ( 𝑆 × 𝑆 )
2 ndmovordi.4 𝑅 ⊆ ( 𝑆 × 𝑆 )
3 ndmovordi.5 ¬ ∅ ∈ 𝑆
4 ndmovordi.6 ( 𝐶𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) )
5 2 brel ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) → ( ( 𝐶 𝐹 𝐴 ) ∈ 𝑆 ∧ ( 𝐶 𝐹 𝐵 ) ∈ 𝑆 ) )
6 5 simpld ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) → ( 𝐶 𝐹 𝐴 ) ∈ 𝑆 )
7 1 3 ndmovrcl ( ( 𝐶 𝐹 𝐴 ) ∈ 𝑆 → ( 𝐶𝑆𝐴𝑆 ) )
8 7 simpld ( ( 𝐶 𝐹 𝐴 ) ∈ 𝑆𝐶𝑆 )
9 6 8 syl ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) → 𝐶𝑆 )
10 4 biimprd ( 𝐶𝑆 → ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) → 𝐴 𝑅 𝐵 ) )
11 9 10 mpcom ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) → 𝐴 𝑅 𝐵 )