Description: Reverse closure law, when an operation's domain doesn't contain the empty set. (Contributed by NM, 3-Feb-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ndmov.1 | ⊢ dom 𝐹 = ( 𝑆 × 𝑆 ) | |
| ndmovrcl.3 | ⊢ ¬ ∅ ∈ 𝑆 | ||
| Assertion | ndmovrcl | ⊢ ( ( 𝐴 𝐹 𝐵 ) ∈ 𝑆 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmov.1 | ⊢ dom 𝐹 = ( 𝑆 × 𝑆 ) | |
| 2 | ndmovrcl.3 | ⊢ ¬ ∅ ∈ 𝑆 | |
| 3 | 1 | ndmov | ⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 𝐹 𝐵 ) = ∅ ) |
| 4 | 3 | eleq1d | ⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ( 𝐴 𝐹 𝐵 ) ∈ 𝑆 ↔ ∅ ∈ 𝑆 ) ) |
| 5 | 2 4 | mtbiri | ⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ¬ ( 𝐴 𝐹 𝐵 ) ∈ 𝑆 ) |
| 6 | 5 | con4i | ⊢ ( ( 𝐴 𝐹 𝐵 ) ∈ 𝑆 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) |