Metamath Proof Explorer


Theorem ndmovrcl

Description: Reverse closure law, when an operation's domain doesn't contain the empty set. (Contributed by NM, 3-Feb-1996)

Ref Expression
Hypotheses ndmov.1 dom 𝐹 = ( 𝑆 × 𝑆 )
ndmovrcl.3 ¬ ∅ ∈ 𝑆
Assertion ndmovrcl ( ( 𝐴 𝐹 𝐵 ) ∈ 𝑆 → ( 𝐴𝑆𝐵𝑆 ) )

Proof

Step Hyp Ref Expression
1 ndmov.1 dom 𝐹 = ( 𝑆 × 𝑆 )
2 ndmovrcl.3 ¬ ∅ ∈ 𝑆
3 1 ndmov ( ¬ ( 𝐴𝑆𝐵𝑆 ) → ( 𝐴 𝐹 𝐵 ) = ∅ )
4 3 eleq1d ( ¬ ( 𝐴𝑆𝐵𝑆 ) → ( ( 𝐴 𝐹 𝐵 ) ∈ 𝑆 ↔ ∅ ∈ 𝑆 ) )
5 2 4 mtbiri ( ¬ ( 𝐴𝑆𝐵𝑆 ) → ¬ ( 𝐴 𝐹 𝐵 ) ∈ 𝑆 )
6 5 con4i ( ( 𝐴 𝐹 𝐵 ) ∈ 𝑆 → ( 𝐴𝑆𝐵𝑆 ) )