| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ndvdsi.1 | ⊢ 𝐴  ∈  ℕ | 
						
							| 2 |  | ndvdsi.2 | ⊢ 𝑄  ∈  ℕ0 | 
						
							| 3 |  | ndvdsi.3 | ⊢ 𝑅  ∈  ℕ | 
						
							| 4 |  | ndvdsi.4 | ⊢ ( ( 𝐴  ·  𝑄 )  +  𝑅 )  =  𝐵 | 
						
							| 5 |  | ndvdsi.5 | ⊢ 𝑅  <  𝐴 | 
						
							| 6 | 1 | nnzi | ⊢ 𝐴  ∈  ℤ | 
						
							| 7 | 2 | nn0zi | ⊢ 𝑄  ∈  ℤ | 
						
							| 8 |  | dvdsmul1 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑄  ∈  ℤ )  →  𝐴  ∥  ( 𝐴  ·  𝑄 ) ) | 
						
							| 9 | 6 7 8 | mp2an | ⊢ 𝐴  ∥  ( 𝐴  ·  𝑄 ) | 
						
							| 10 |  | zmulcl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑄  ∈  ℤ )  →  ( 𝐴  ·  𝑄 )  ∈  ℤ ) | 
						
							| 11 | 6 7 10 | mp2an | ⊢ ( 𝐴  ·  𝑄 )  ∈  ℤ | 
						
							| 12 | 3 5 | pm3.2i | ⊢ ( 𝑅  ∈  ℕ  ∧  𝑅  <  𝐴 ) | 
						
							| 13 |  | ndvdsadd | ⊢ ( ( ( 𝐴  ·  𝑄 )  ∈  ℤ  ∧  𝐴  ∈  ℕ  ∧  ( 𝑅  ∈  ℕ  ∧  𝑅  <  𝐴 ) )  →  ( 𝐴  ∥  ( 𝐴  ·  𝑄 )  →  ¬  𝐴  ∥  ( ( 𝐴  ·  𝑄 )  +  𝑅 ) ) ) | 
						
							| 14 | 11 1 12 13 | mp3an | ⊢ ( 𝐴  ∥  ( 𝐴  ·  𝑄 )  →  ¬  𝐴  ∥  ( ( 𝐴  ·  𝑄 )  +  𝑅 ) ) | 
						
							| 15 | 9 14 | ax-mp | ⊢ ¬  𝐴  ∥  ( ( 𝐴  ·  𝑄 )  +  𝑅 ) | 
						
							| 16 | 4 | breq2i | ⊢ ( 𝐴  ∥  ( ( 𝐴  ·  𝑄 )  +  𝑅 )  ↔  𝐴  ∥  𝐵 ) | 
						
							| 17 | 15 16 | mtbi | ⊢ ¬  𝐴  ∥  𝐵 |