| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ndvdsi.1 |
⊢ 𝐴 ∈ ℕ |
| 2 |
|
ndvdsi.2 |
⊢ 𝑄 ∈ ℕ0 |
| 3 |
|
ndvdsi.3 |
⊢ 𝑅 ∈ ℕ |
| 4 |
|
ndvdsi.4 |
⊢ ( ( 𝐴 · 𝑄 ) + 𝑅 ) = 𝐵 |
| 5 |
|
ndvdsi.5 |
⊢ 𝑅 < 𝐴 |
| 6 |
1
|
nnzi |
⊢ 𝐴 ∈ ℤ |
| 7 |
2
|
nn0zi |
⊢ 𝑄 ∈ ℤ |
| 8 |
|
dvdsmul1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑄 ∈ ℤ ) → 𝐴 ∥ ( 𝐴 · 𝑄 ) ) |
| 9 |
6 7 8
|
mp2an |
⊢ 𝐴 ∥ ( 𝐴 · 𝑄 ) |
| 10 |
|
zmulcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑄 ∈ ℤ ) → ( 𝐴 · 𝑄 ) ∈ ℤ ) |
| 11 |
6 7 10
|
mp2an |
⊢ ( 𝐴 · 𝑄 ) ∈ ℤ |
| 12 |
3 5
|
pm3.2i |
⊢ ( 𝑅 ∈ ℕ ∧ 𝑅 < 𝐴 ) |
| 13 |
|
ndvdsadd |
⊢ ( ( ( 𝐴 · 𝑄 ) ∈ ℤ ∧ 𝐴 ∈ ℕ ∧ ( 𝑅 ∈ ℕ ∧ 𝑅 < 𝐴 ) ) → ( 𝐴 ∥ ( 𝐴 · 𝑄 ) → ¬ 𝐴 ∥ ( ( 𝐴 · 𝑄 ) + 𝑅 ) ) ) |
| 14 |
11 1 12 13
|
mp3an |
⊢ ( 𝐴 ∥ ( 𝐴 · 𝑄 ) → ¬ 𝐴 ∥ ( ( 𝐴 · 𝑄 ) + 𝑅 ) ) |
| 15 |
9 14
|
ax-mp |
⊢ ¬ 𝐴 ∥ ( ( 𝐴 · 𝑄 ) + 𝑅 ) |
| 16 |
4
|
breq2i |
⊢ ( 𝐴 ∥ ( ( 𝐴 · 𝑄 ) + 𝑅 ) ↔ 𝐴 ∥ 𝐵 ) |
| 17 |
15 16
|
mtbi |
⊢ ¬ 𝐴 ∥ 𝐵 |