Metamath Proof Explorer


Theorem ndvdsp1

Description: Special case of ndvdsadd . If an integer D greater than 1 divides N , it does not divide N + 1 . (Contributed by Paul Chapman, 31-Mar-2011)

Ref Expression
Assertion ndvdsp1 ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 1 < 𝐷 ) → ( 𝐷𝑁 → ¬ 𝐷 ∥ ( 𝑁 + 1 ) ) )

Proof

Step Hyp Ref Expression
1 1nn 1 ∈ ℕ
2 1 jctl ( 1 < 𝐷 → ( 1 ∈ ℕ ∧ 1 < 𝐷 ) )
3 ndvdsadd ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 1 ∈ ℕ ∧ 1 < 𝐷 ) ) → ( 𝐷𝑁 → ¬ 𝐷 ∥ ( 𝑁 + 1 ) ) )
4 2 3 syl3an3 ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 1 < 𝐷 ) → ( 𝐷𝑁 → ¬ 𝐷 ∥ ( 𝑁 + 1 ) ) )