Metamath Proof Explorer


Theorem ndxarg

Description: Get the numeric argument from a defined structure component extractor such as df-base . (Contributed by Mario Carneiro, 6-Oct-2013)

Ref Expression
Hypotheses ndxarg.e 𝐸 = Slot 𝑁
ndxarg.n 𝑁 ∈ ℕ
Assertion ndxarg ( 𝐸 ‘ ndx ) = 𝑁

Proof

Step Hyp Ref Expression
1 ndxarg.e 𝐸 = Slot 𝑁
2 ndxarg.n 𝑁 ∈ ℕ
3 df-ndx ndx = ( I ↾ ℕ )
4 nnex ℕ ∈ V
5 resiexg ( ℕ ∈ V → ( I ↾ ℕ ) ∈ V )
6 4 5 ax-mp ( I ↾ ℕ ) ∈ V
7 3 6 eqeltri ndx ∈ V
8 7 1 strfvn ( 𝐸 ‘ ndx ) = ( ndx ‘ 𝑁 )
9 3 fveq1i ( ndx ‘ 𝑁 ) = ( ( I ↾ ℕ ) ‘ 𝑁 )
10 fvresi ( 𝑁 ∈ ℕ → ( ( I ↾ ℕ ) ‘ 𝑁 ) = 𝑁 )
11 2 10 ax-mp ( ( I ↾ ℕ ) ‘ 𝑁 ) = 𝑁
12 8 9 11 3eqtri ( 𝐸 ‘ ndx ) = 𝑁