Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
⊢ 0 ∈ ℝ |
2 |
|
lttri2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐴 ≠ 0 ↔ ( 𝐴 < 0 ∨ 0 < 𝐴 ) ) ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≠ 0 ↔ ( 𝐴 < 0 ∨ 0 < 𝐴 ) ) ) |
4 |
3
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 ≠ 0 ↔ ( 𝐴 < 0 ∨ 0 < 𝐴 ) ) ) |
5 |
|
lenlt |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ 𝐴 ↔ ¬ 𝐴 < 0 ) ) |
6 |
1 5
|
mpan |
⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 ↔ ¬ 𝐴 < 0 ) ) |
7 |
6
|
biimpa |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ¬ 𝐴 < 0 ) |
8 |
|
biorf |
⊢ ( ¬ 𝐴 < 0 → ( 0 < 𝐴 ↔ ( 𝐴 < 0 ∨ 0 < 𝐴 ) ) ) |
9 |
7 8
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 0 < 𝐴 ↔ ( 𝐴 < 0 ∨ 0 < 𝐴 ) ) ) |
10 |
4 9
|
bitr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 ≠ 0 ↔ 0 < 𝐴 ) ) |