Metamath Proof Explorer


Theorem ne0p

Description: A test to show that a polynomial is nonzero. (Contributed by Mario Carneiro, 23-Jul-2014)

Ref Expression
Assertion ne0p ( ( 𝐴 ∈ ℂ ∧ ( 𝐹𝐴 ) ≠ 0 ) → 𝐹 ≠ 0𝑝 )

Proof

Step Hyp Ref Expression
1 0pval ( 𝐴 ∈ ℂ → ( 0𝑝𝐴 ) = 0 )
2 fveq1 ( 𝐹 = 0𝑝 → ( 𝐹𝐴 ) = ( 0𝑝𝐴 ) )
3 2 eqeq1d ( 𝐹 = 0𝑝 → ( ( 𝐹𝐴 ) = 0 ↔ ( 0𝑝𝐴 ) = 0 ) )
4 1 3 syl5ibrcom ( 𝐴 ∈ ℂ → ( 𝐹 = 0𝑝 → ( 𝐹𝐴 ) = 0 ) )
5 4 necon3d ( 𝐴 ∈ ℂ → ( ( 𝐹𝐴 ) ≠ 0 → 𝐹 ≠ 0𝑝 ) )
6 5 imp ( ( 𝐴 ∈ ℂ ∧ ( 𝐹𝐴 ) ≠ 0 ) → 𝐹 ≠ 0𝑝 )