Description: A De Morgan's law for inequality. (Contributed by NM, 30-Sep-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | ne3anior | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷 ∧ 𝐸 ≠ 𝐹 ) ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐶 = 𝐷 ∨ 𝐸 = 𝐹 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anor | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷 ∧ 𝐸 ≠ 𝐹 ) ↔ ¬ ( ¬ 𝐴 ≠ 𝐵 ∨ ¬ 𝐶 ≠ 𝐷 ∨ ¬ 𝐸 ≠ 𝐹 ) ) | |
2 | nne | ⊢ ( ¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵 ) | |
3 | nne | ⊢ ( ¬ 𝐶 ≠ 𝐷 ↔ 𝐶 = 𝐷 ) | |
4 | nne | ⊢ ( ¬ 𝐸 ≠ 𝐹 ↔ 𝐸 = 𝐹 ) | |
5 | 2 3 4 | 3orbi123i | ⊢ ( ( ¬ 𝐴 ≠ 𝐵 ∨ ¬ 𝐶 ≠ 𝐷 ∨ ¬ 𝐸 ≠ 𝐹 ) ↔ ( 𝐴 = 𝐵 ∨ 𝐶 = 𝐷 ∨ 𝐸 = 𝐹 ) ) |
6 | 1 5 | xchbinx | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷 ∧ 𝐸 ≠ 𝐹 ) ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐶 = 𝐷 ∨ 𝐸 = 𝐹 ) ) |