Description: Contraposition law for inequality. (Contributed by NM, 28-Dec-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | nebi | ⊢ ( ( 𝐴 = 𝐵 ↔ 𝐶 = 𝐷 ) ↔ ( 𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | ⊢ ( ( 𝐴 = 𝐵 ↔ 𝐶 = 𝐷 ) → ( 𝐴 = 𝐵 ↔ 𝐶 = 𝐷 ) ) | |
2 | 1 | necon3bid | ⊢ ( ( 𝐴 = 𝐵 ↔ 𝐶 = 𝐷 ) → ( 𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷 ) ) |
3 | id | ⊢ ( ( 𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷 ) → ( 𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷 ) ) | |
4 | 3 | necon4bid | ⊢ ( ( 𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷 ) → ( 𝐴 = 𝐵 ↔ 𝐶 = 𝐷 ) ) |
5 | 2 4 | impbii | ⊢ ( ( 𝐴 = 𝐵 ↔ 𝐶 = 𝐷 ) ↔ ( 𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷 ) ) |