Description: Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | necomd.1 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | |
| Assertion | necomd | ⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necomd.1 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | |
| 2 | necom | ⊢ ( 𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴 ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |