Metamath Proof Explorer
Description: Contrapositive inference for inequality. (Contributed by NM, 17-Mar-2007) (Proof shortened by Wolf Lammen, 25-Nov-2019)
|
|
Ref |
Expression |
|
Hypothesis |
necon1abii.1 |
⊢ ( ¬ 𝜑 ↔ 𝐴 = 𝐵 ) |
|
Assertion |
necon1abii |
⊢ ( 𝐴 ≠ 𝐵 ↔ 𝜑 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
necon1abii.1 |
⊢ ( ¬ 𝜑 ↔ 𝐴 = 𝐵 ) |
2 |
|
notnotb |
⊢ ( 𝜑 ↔ ¬ ¬ 𝜑 ) |
3 |
1
|
necon3bbii |
⊢ ( ¬ ¬ 𝜑 ↔ 𝐴 ≠ 𝐵 ) |
4 |
2 3
|
bitr2i |
⊢ ( 𝐴 ≠ 𝐵 ↔ 𝜑 ) |