Description: Contrapositive law deduction for inequality. (Contributed by NM, 29-Jun-2007)
Ref | Expression | ||
---|---|---|---|
Hypothesis | necon4bid.1 | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷 ) ) | |
Assertion | necon4bid | ⊢ ( 𝜑 → ( 𝐴 = 𝐵 ↔ 𝐶 = 𝐷 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon4bid.1 | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷 ) ) | |
2 | 1 | necon2bbid | ⊢ ( 𝜑 → ( 𝐶 = 𝐷 ↔ ¬ 𝐴 ≠ 𝐵 ) ) |
3 | nne | ⊢ ( ¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵 ) | |
4 | 2 3 | bitr2di | ⊢ ( 𝜑 → ( 𝐴 = 𝐵 ↔ 𝐶 = 𝐷 ) ) |