Description: Inference for inequality. (Contributed by NM, 29-Apr-2005) (Proof shortened by Wolf Lammen, 19-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | neeq1i.1 | ⊢ 𝐴 = 𝐵 | |
Assertion | neeq2i | ⊢ ( 𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1i.1 | ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqeq2i | ⊢ ( 𝐶 = 𝐴 ↔ 𝐶 = 𝐵 ) |
3 | 2 | necon3bii | ⊢ ( 𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵 ) |