Metamath Proof Explorer
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012)
|
|
Ref |
Expression |
|
Hypotheses |
neeqtrd.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
|
|
neeqtrd.2 |
⊢ ( 𝜑 → 𝐵 = 𝐶 ) |
|
Assertion |
neeqtrd |
⊢ ( 𝜑 → 𝐴 ≠ 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
neeqtrd.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
2 |
|
neeqtrd.2 |
⊢ ( 𝜑 → 𝐵 = 𝐶 ) |
3 |
2
|
neeq2d |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶 ) ) |
4 |
1 3
|
mpbid |
⊢ ( 𝜑 → 𝐴 ≠ 𝐶 ) |