Description: Negative is one-to-one. (Contributed by NM, 8-Feb-2005) (Revised by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | neg11 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐴 = - 𝐵 ↔ 𝐴 = 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negeq | ⊢ ( - 𝐴 = - 𝐵 → - - 𝐴 = - - 𝐵 ) | |
2 | negneg | ⊢ ( 𝐴 ∈ ℂ → - - 𝐴 = 𝐴 ) | |
3 | negneg | ⊢ ( 𝐵 ∈ ℂ → - - 𝐵 = 𝐵 ) | |
4 | 2 3 | eqeqan12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - - 𝐴 = - - 𝐵 ↔ 𝐴 = 𝐵 ) ) |
5 | 1 4 | syl5ib | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐴 = - 𝐵 → 𝐴 = 𝐵 ) ) |
6 | negeq | ⊢ ( 𝐴 = 𝐵 → - 𝐴 = - 𝐵 ) | |
7 | 5 6 | impbid1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐴 = - 𝐵 ↔ 𝐴 = 𝐵 ) ) |