Metamath Proof Explorer


Theorem neg11ad

Description: The negatives of two complex numbers are equal iff they are equal. Deduction form of neg11 . Generalization of neg11d . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses negidd.1 ( 𝜑𝐴 ∈ ℂ )
neg11ad.2 ( 𝜑𝐵 ∈ ℂ )
Assertion neg11ad ( 𝜑 → ( - 𝐴 = - 𝐵𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 negidd.1 ( 𝜑𝐴 ∈ ℂ )
2 neg11ad.2 ( 𝜑𝐵 ∈ ℂ )
3 neg11 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐴 = - 𝐵𝐴 = 𝐵 ) )
4 1 2 3 syl2anc ( 𝜑 → ( - 𝐴 = - 𝐵𝐴 = 𝐵 ) )