Metamath Proof Explorer


Theorem neg1lt0

Description: -1 is less than 0. (Contributed by David A. Wheeler, 8-Dec-2018)

Ref Expression
Assertion neg1lt0 - 1 < 0

Proof

Step Hyp Ref Expression
1 0lt1 0 < 1
2 1re 1 ∈ ℝ
3 lt0neg2 ( 1 ∈ ℝ → ( 0 < 1 ↔ - 1 < 0 ) )
4 2 3 ax-mp ( 0 < 1 ↔ - 1 < 0 )
5 1 4 mpbi - 1 < 0