Metamath Proof Explorer


Theorem neg1lt0

Description: -1 is less than 0. (Contributed by David A. Wheeler, 8-Dec-2018)

Ref Expression
Assertion neg1lt0 - 1 < 0

Proof

Step Hyp Ref Expression
1 neg0 - 0 = 0
2 0lt1 0 < 1
3 1 2 eqbrtri - 0 < 1
4 1re 1 ∈ ℝ
5 0re 0 ∈ ℝ
6 4 5 ltnegcon1i ( - 1 < 0 ↔ - 0 < 1 )
7 3 6 mpbir - 1 < 0