Description: Closure law for negative. (Contributed by NM, 6-Aug-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg | ⊢ - 𝐴 = ( 0 − 𝐴 ) | |
2 | 0cn | ⊢ 0 ∈ ℂ | |
3 | subcl | ⊢ ( ( 0 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 0 − 𝐴 ) ∈ ℂ ) | |
4 | 2 3 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( 0 − 𝐴 ) ∈ ℂ ) |
5 | 1 4 | eqeltrid | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |