Metamath Proof Explorer


Theorem negcl

Description: Closure law for negative. (Contributed by NM, 6-Aug-2003)

Ref Expression
Assertion negcl ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ )

Proof

Step Hyp Ref Expression
1 df-neg - 𝐴 = ( 0 − 𝐴 )
2 0cn 0 ∈ ℂ
3 subcl ( ( 0 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 0 − 𝐴 ) ∈ ℂ )
4 2 3 mpan ( 𝐴 ∈ ℂ → ( 0 − 𝐴 ) ∈ ℂ )
5 1 4 eqeltrid ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ )