Description: Closure law for negative. (Contributed by NM, 6-Aug-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg | ⊢ - 𝐴 = ( 0 − 𝐴 ) | |
| 2 | 0cn | ⊢ 0 ∈ ℂ | |
| 3 | subcl | ⊢ ( ( 0 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 0 − 𝐴 ) ∈ ℂ ) | |
| 4 | 2 3 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( 0 − 𝐴 ) ∈ ℂ ) |
| 5 | 1 4 | eqeltrid | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |