| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negcncf.1 | ⊢ 𝐹  =  ( 𝑥  ∈  𝐴  ↦  - 𝑥 ) | 
						
							| 2 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 3 |  | ssel2 | ⊢ ( ( 𝐴  ⊆  ℂ  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ℂ ) | 
						
							| 4 |  | ovmpot | ⊢ ( ( - 1  ∈  ℂ  ∧  𝑥  ∈  ℂ )  →  ( - 1 ( 𝑎  ∈  ℂ ,  𝑏  ∈  ℂ  ↦  ( 𝑎  ·  𝑏 ) ) 𝑥 )  =  ( - 1  ·  𝑥 ) ) | 
						
							| 5 | 4 | eqcomd | ⊢ ( ( - 1  ∈  ℂ  ∧  𝑥  ∈  ℂ )  →  ( - 1  ·  𝑥 )  =  ( - 1 ( 𝑎  ∈  ℂ ,  𝑏  ∈  ℂ  ↦  ( 𝑎  ·  𝑏 ) ) 𝑥 ) ) | 
						
							| 6 | 2 3 5 | sylancr | ⊢ ( ( 𝐴  ⊆  ℂ  ∧  𝑥  ∈  𝐴 )  →  ( - 1  ·  𝑥 )  =  ( - 1 ( 𝑎  ∈  ℂ ,  𝑏  ∈  ℂ  ↦  ( 𝑎  ·  𝑏 ) ) 𝑥 ) ) | 
						
							| 7 | 3 | mulm1d | ⊢ ( ( 𝐴  ⊆  ℂ  ∧  𝑥  ∈  𝐴 )  →  ( - 1  ·  𝑥 )  =  - 𝑥 ) | 
						
							| 8 | 6 7 | eqtr3d | ⊢ ( ( 𝐴  ⊆  ℂ  ∧  𝑥  ∈  𝐴 )  →  ( - 1 ( 𝑎  ∈  ℂ ,  𝑏  ∈  ℂ  ↦  ( 𝑎  ·  𝑏 ) ) 𝑥 )  =  - 𝑥 ) | 
						
							| 9 | 8 | mpteq2dva | ⊢ ( 𝐴  ⊆  ℂ  →  ( 𝑥  ∈  𝐴  ↦  ( - 1 ( 𝑎  ∈  ℂ ,  𝑏  ∈  ℂ  ↦  ( 𝑎  ·  𝑏 ) ) 𝑥 ) )  =  ( 𝑥  ∈  𝐴  ↦  - 𝑥 ) ) | 
						
							| 10 | 9 1 | eqtr4di | ⊢ ( 𝐴  ⊆  ℂ  →  ( 𝑥  ∈  𝐴  ↦  ( - 1 ( 𝑎  ∈  ℂ ,  𝑏  ∈  ℂ  ↦  ( 𝑎  ·  𝑏 ) ) 𝑥 ) )  =  𝐹 ) | 
						
							| 11 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 12 | 11 | mpomulcn | ⊢ ( 𝑎  ∈  ℂ ,  𝑏  ∈  ℂ  ↦  ( 𝑎  ·  𝑏 ) )  ∈  ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  Cn  ( TopOpen ‘ ℂfld ) ) | 
						
							| 13 | 12 | a1i | ⊢ ( 𝐴  ⊆  ℂ  →  ( 𝑎  ∈  ℂ ,  𝑏  ∈  ℂ  ↦  ( 𝑎  ·  𝑏 ) )  ∈  ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 14 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 15 |  | cncfmptc | ⊢ ( ( - 1  ∈  ℂ  ∧  𝐴  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( 𝑥  ∈  𝐴  ↦  - 1 )  ∈  ( 𝐴 –cn→ ℂ ) ) | 
						
							| 16 | 2 14 15 | mp3an13 | ⊢ ( 𝐴  ⊆  ℂ  →  ( 𝑥  ∈  𝐴  ↦  - 1 )  ∈  ( 𝐴 –cn→ ℂ ) ) | 
						
							| 17 |  | cncfmptid | ⊢ ( ( 𝐴  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( 𝑥  ∈  𝐴  ↦  𝑥 )  ∈  ( 𝐴 –cn→ ℂ ) ) | 
						
							| 18 | 14 17 | mpan2 | ⊢ ( 𝐴  ⊆  ℂ  →  ( 𝑥  ∈  𝐴  ↦  𝑥 )  ∈  ( 𝐴 –cn→ ℂ ) ) | 
						
							| 19 | 11 13 16 18 | cncfmpt2f | ⊢ ( 𝐴  ⊆  ℂ  →  ( 𝑥  ∈  𝐴  ↦  ( - 1 ( 𝑎  ∈  ℂ ,  𝑏  ∈  ℂ  ↦  ( 𝑎  ·  𝑏 ) ) 𝑥 ) )  ∈  ( 𝐴 –cn→ ℂ ) ) | 
						
							| 20 | 10 19 | eqeltrrd | ⊢ ( 𝐴  ⊆  ℂ  →  𝐹  ∈  ( 𝐴 –cn→ ℂ ) ) |