Metamath Proof Explorer


Theorem negcncfg

Description: The opposite of a continuous function is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis negcncfg.1 ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ( 𝐴cn→ ℂ ) )
Assertion negcncfg ( 𝜑 → ( 𝑥𝐴 ↦ - 𝐵 ) ∈ ( 𝐴cn→ ℂ ) )

Proof

Step Hyp Ref Expression
1 negcncfg.1 ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ( 𝐴cn→ ℂ ) )
2 df-neg - 𝐵 = ( 0 − 𝐵 )
3 2 a1i ( ( 𝜑𝑥𝐴 ) → - 𝐵 = ( 0 − 𝐵 ) )
4 3 mpteq2dva ( 𝜑 → ( 𝑥𝐴 ↦ - 𝐵 ) = ( 𝑥𝐴 ↦ ( 0 − 𝐵 ) ) )
5 eqid ( 𝑥 ∈ ℂ ↦ 0 ) = ( 𝑥 ∈ ℂ ↦ 0 )
6 0cn 0 ∈ ℂ
7 ssidd ( 0 ∈ ℂ → ℂ ⊆ ℂ )
8 id ( 0 ∈ ℂ → 0 ∈ ℂ )
9 7 8 7 constcncfg ( 0 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ 0 ) ∈ ( ℂ –cn→ ℂ ) )
10 6 9 mp1i ( 𝜑 → ( 𝑥 ∈ ℂ ↦ 0 ) ∈ ( ℂ –cn→ ℂ ) )
11 cncfrss ( ( 𝑥𝐴𝐵 ) ∈ ( 𝐴cn→ ℂ ) → 𝐴 ⊆ ℂ )
12 1 11 syl ( 𝜑𝐴 ⊆ ℂ )
13 ssidd ( 𝜑 → ℂ ⊆ ℂ )
14 6 a1i ( ( 𝜑𝑥𝐴 ) → 0 ∈ ℂ )
15 5 10 12 13 14 cncfmptssg ( 𝜑 → ( 𝑥𝐴 ↦ 0 ) ∈ ( 𝐴cn→ ℂ ) )
16 15 1 subcncf ( 𝜑 → ( 𝑥𝐴 ↦ ( 0 − 𝐵 ) ) ∈ ( 𝐴cn→ ℂ ) )
17 4 16 eqeltrd ( 𝜑 → ( 𝑥𝐴 ↦ - 𝐵 ) ∈ ( 𝐴cn→ ℂ ) )