Metamath Proof Explorer


Theorem negcon1ad

Description: Contraposition law for unary minus. One-way deduction form of negcon1 . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses negidd.1 ( 𝜑𝐴 ∈ ℂ )
negcon1ad.2 ( 𝜑 → - 𝐴 = 𝐵 )
Assertion negcon1ad ( 𝜑 → - 𝐵 = 𝐴 )

Proof

Step Hyp Ref Expression
1 negidd.1 ( 𝜑𝐴 ∈ ℂ )
2 negcon1ad.2 ( 𝜑 → - 𝐴 = 𝐵 )
3 1 negcld ( 𝜑 → - 𝐴 ∈ ℂ )
4 2 3 eqeltrrd ( 𝜑𝐵 ∈ ℂ )
5 1 4 negcon1d ( 𝜑 → ( - 𝐴 = 𝐵 ↔ - 𝐵 = 𝐴 ) )
6 2 5 mpbid ( 𝜑 → - 𝐵 = 𝐴 )