Metamath Proof Explorer


Theorem negcon1d

Description: Contraposition law for unary minus. Deduction form of negcon1 . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses negidd.1 ( 𝜑𝐴 ∈ ℂ )
negcon1d.2 ( 𝜑𝐵 ∈ ℂ )
Assertion negcon1d ( 𝜑 → ( - 𝐴 = 𝐵 ↔ - 𝐵 = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 negidd.1 ( 𝜑𝐴 ∈ ℂ )
2 negcon1d.2 ( 𝜑𝐵 ∈ ℂ )
3 negcon1 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐴 = 𝐵 ↔ - 𝐵 = 𝐴 ) )
4 1 2 3 syl2anc ( 𝜑 → ( - 𝐴 = 𝐵 ↔ - 𝐵 = 𝐴 ) )