Description: Negative contraposition law. (Contributed by NM, 14-Nov-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | negcon2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 = - 𝐵 ↔ 𝐵 = - 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom | ⊢ ( 𝐴 = - 𝐵 ↔ - 𝐵 = 𝐴 ) | |
2 | negcon1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐴 = 𝐵 ↔ - 𝐵 = 𝐴 ) ) | |
3 | 1 2 | bitr4id | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 = - 𝐵 ↔ - 𝐴 = 𝐵 ) ) |
4 | eqcom | ⊢ ( - 𝐴 = 𝐵 ↔ 𝐵 = - 𝐴 ) | |
5 | 3 4 | bitrdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 = - 𝐵 ↔ 𝐵 = - 𝐴 ) ) |