Metamath Proof Explorer


Theorem negcon2

Description: Negative contraposition law. (Contributed by NM, 14-Nov-2004)

Ref Expression
Assertion negcon2 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 = - 𝐵𝐵 = - 𝐴 ) )

Proof

Step Hyp Ref Expression
1 eqcom ( 𝐴 = - 𝐵 ↔ - 𝐵 = 𝐴 )
2 negcon1 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐴 = 𝐵 ↔ - 𝐵 = 𝐴 ) )
3 1 2 bitr4id ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 = - 𝐵 ↔ - 𝐴 = 𝐵 ) )
4 eqcom ( - 𝐴 = 𝐵𝐵 = - 𝐴 )
5 3 4 bitrdi ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 = - 𝐵𝐵 = - 𝐴 ) )