Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
2 |
|
znegcl |
⊢ ( 𝑀 ∈ ℤ → - 𝑀 ∈ ℤ ) |
3 |
2
|
anim1i |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( - 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
4 |
|
znegcl |
⊢ ( 𝑥 ∈ ℤ → - 𝑥 ∈ ℤ ) |
5 |
4
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → - 𝑥 ∈ ℤ ) |
6 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
7 |
|
zcn |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) |
8 |
|
mul2neg |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( - 𝑥 · - 𝑀 ) = ( 𝑥 · 𝑀 ) ) |
9 |
6 7 8
|
syl2anr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( - 𝑥 · - 𝑀 ) = ( 𝑥 · 𝑀 ) ) |
10 |
9
|
adantlr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( - 𝑥 · - 𝑀 ) = ( 𝑥 · 𝑀 ) ) |
11 |
10
|
eqeq1d |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( ( - 𝑥 · - 𝑀 ) = 𝑁 ↔ ( 𝑥 · 𝑀 ) = 𝑁 ) ) |
12 |
11
|
biimprd |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 · 𝑀 ) = 𝑁 → ( - 𝑥 · - 𝑀 ) = 𝑁 ) ) |
13 |
1 3 5 12
|
dvds1lem |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 → - 𝑀 ∥ 𝑁 ) ) |
14 |
|
mulneg12 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( - 𝑥 · 𝑀 ) = ( 𝑥 · - 𝑀 ) ) |
15 |
6 7 14
|
syl2anr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( - 𝑥 · 𝑀 ) = ( 𝑥 · - 𝑀 ) ) |
16 |
15
|
adantlr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( - 𝑥 · 𝑀 ) = ( 𝑥 · - 𝑀 ) ) |
17 |
16
|
eqeq1d |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( ( - 𝑥 · 𝑀 ) = 𝑁 ↔ ( 𝑥 · - 𝑀 ) = 𝑁 ) ) |
18 |
17
|
biimprd |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 · - 𝑀 ) = 𝑁 → ( - 𝑥 · 𝑀 ) = 𝑁 ) ) |
19 |
3 1 5 18
|
dvds1lem |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( - 𝑀 ∥ 𝑁 → 𝑀 ∥ 𝑁 ) ) |
20 |
13 19
|
impbid |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ - 𝑀 ∥ 𝑁 ) ) |