Metamath Proof Explorer


Theorem negelrp

Description: Elementhood of a negation in the positive real numbers. (Contributed by Thierry Arnoux, 19-Sep-2018)

Ref Expression
Assertion negelrp ( 𝐴 ∈ ℝ → ( - 𝐴 ∈ ℝ+𝐴 < 0 ) )

Proof

Step Hyp Ref Expression
1 elrp ( - 𝐴 ∈ ℝ+ ↔ ( - 𝐴 ∈ ℝ ∧ 0 < - 𝐴 ) )
2 lt0neg1 ( 𝐴 ∈ ℝ → ( 𝐴 < 0 ↔ 0 < - 𝐴 ) )
3 renegcl ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ )
4 3 biantrurd ( 𝐴 ∈ ℝ → ( 0 < - 𝐴 ↔ ( - 𝐴 ∈ ℝ ∧ 0 < - 𝐴 ) ) )
5 2 4 bitr2d ( 𝐴 ∈ ℝ → ( ( - 𝐴 ∈ ℝ ∧ 0 < - 𝐴 ) ↔ 𝐴 < 0 ) )
6 1 5 syl5bb ( 𝐴 ∈ ℝ → ( - 𝐴 ∈ ℝ+𝐴 < 0 ) )