Description: Elementhood of a negation in the positive real numbers. (Contributed by Thierry Arnoux, 19-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | negelrp | ⊢ ( 𝐴 ∈ ℝ → ( - 𝐴 ∈ ℝ+ ↔ 𝐴 < 0 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrp | ⊢ ( - 𝐴 ∈ ℝ+ ↔ ( - 𝐴 ∈ ℝ ∧ 0 < - 𝐴 ) ) | |
2 | lt0neg1 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < 0 ↔ 0 < - 𝐴 ) ) | |
3 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
4 | 3 | biantrurd | ⊢ ( 𝐴 ∈ ℝ → ( 0 < - 𝐴 ↔ ( - 𝐴 ∈ ℝ ∧ 0 < - 𝐴 ) ) ) |
5 | 2 4 | bitr2d | ⊢ ( 𝐴 ∈ ℝ → ( ( - 𝐴 ∈ ℝ ∧ 0 < - 𝐴 ) ↔ 𝐴 < 0 ) ) |
6 | 1 5 | syl5bb | ⊢ ( 𝐴 ∈ ℝ → ( - 𝐴 ∈ ℝ+ ↔ 𝐴 < 0 ) ) |