Description: Elementhood of a negation in the positive real numbers. (Contributed by Thierry Arnoux, 19-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | negelrp | ⊢ ( 𝐴 ∈ ℝ → ( - 𝐴 ∈ ℝ+ ↔ 𝐴 < 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrp | ⊢ ( - 𝐴 ∈ ℝ+ ↔ ( - 𝐴 ∈ ℝ ∧ 0 < - 𝐴 ) ) | |
| 2 | lt0neg1 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < 0 ↔ 0 < - 𝐴 ) ) | |
| 3 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
| 4 | 3 | biantrurd | ⊢ ( 𝐴 ∈ ℝ → ( 0 < - 𝐴 ↔ ( - 𝐴 ∈ ℝ ∧ 0 < - 𝐴 ) ) ) |
| 5 | 2 4 | bitr2d | ⊢ ( 𝐴 ∈ ℝ → ( ( - 𝐴 ∈ ℝ ∧ 0 < - 𝐴 ) ↔ 𝐴 < 0 ) ) |
| 6 | 1 5 | bitrid | ⊢ ( 𝐴 ∈ ℝ → ( - 𝐴 ∈ ℝ+ ↔ 𝐴 < 0 ) ) |