Metamath Proof Explorer
Description: The negation of a negative number is in the positive real numbers.
(Contributed by Glauco Siliprandi, 26-Jun-2021)
|
|
Ref |
Expression |
|
Hypotheses |
negelrpd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
negelrpd.2 |
⊢ ( 𝜑 → 𝐴 < 0 ) |
|
Assertion |
negelrpd |
⊢ ( 𝜑 → - 𝐴 ∈ ℝ+ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
negelrpd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
negelrpd.2 |
⊢ ( 𝜑 → 𝐴 < 0 ) |
3 |
|
negelrp |
⊢ ( 𝐴 ∈ ℝ → ( - 𝐴 ∈ ℝ+ ↔ 𝐴 < 0 ) ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → ( - 𝐴 ∈ ℝ+ ↔ 𝐴 < 0 ) ) |
5 |
2 4
|
mpbird |
⊢ ( 𝜑 → - 𝐴 ∈ ℝ+ ) |