| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negexpidd.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | negexpidd.2 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 3 |  | negexpidd.3 | ⊢ ( 𝜑  →  ¬  2  ∥  𝑁 ) | 
						
							| 4 | 1 2 | reexpcld | ⊢ ( 𝜑  →  ( 𝐴 ↑ 𝑁 )  ∈  ℝ ) | 
						
							| 5 | 4 | recnd | ⊢ ( 𝜑  →  ( 𝐴 ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 6 | 5 | negidd | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ 𝑁 )  +  - ( 𝐴 ↑ 𝑁 ) )  =  0 ) | 
						
							| 7 | 1 | recnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 8 | 7 | mulm1d | ⊢ ( 𝜑  →  ( - 1  ·  𝐴 )  =  - 𝐴 ) | 
						
							| 9 | 8 | eqcomd | ⊢ ( 𝜑  →  - 𝐴  =  ( - 1  ·  𝐴 ) ) | 
						
							| 10 | 9 | oveq1d | ⊢ ( 𝜑  →  ( - 𝐴 ↑ 𝑁 )  =  ( ( - 1  ·  𝐴 ) ↑ 𝑁 ) ) | 
						
							| 11 |  | nn0z | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) ) | 
						
							| 13 | 12 3 | jctird | ⊢ ( 𝜑  →  ( 𝑁  ∈  ℕ0  →  ( 𝑁  ∈  ℤ  ∧  ¬  2  ∥  𝑁 ) ) ) | 
						
							| 14 | 2 13 | mpd | ⊢ ( 𝜑  →  ( 𝑁  ∈  ℤ  ∧  ¬  2  ∥  𝑁 ) ) | 
						
							| 15 |  | m1expo | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ¬  2  ∥  𝑁 )  →  ( - 1 ↑ 𝑁 )  =  - 1 ) | 
						
							| 16 | 15 | a1i | ⊢ ( 𝜑  →  ( ( 𝑁  ∈  ℤ  ∧  ¬  2  ∥  𝑁 )  →  ( - 1 ↑ 𝑁 )  =  - 1 ) ) | 
						
							| 17 | 14 16 | mpd | ⊢ ( 𝜑  →  ( - 1 ↑ 𝑁 )  =  - 1 ) | 
						
							| 18 | 17 | oveq1d | ⊢ ( 𝜑  →  ( ( - 1 ↑ 𝑁 )  ·  ( 𝐴 ↑ 𝑁 ) )  =  ( - 1  ·  ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 19 | 5 | mulm1d | ⊢ ( 𝜑  →  ( - 1  ·  ( 𝐴 ↑ 𝑁 ) )  =  - ( 𝐴 ↑ 𝑁 ) ) | 
						
							| 20 | 18 19 | eqtr2d | ⊢ ( 𝜑  →  - ( 𝐴 ↑ 𝑁 )  =  ( ( - 1 ↑ 𝑁 )  ·  ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 21 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 22 | 21 | a1i | ⊢ ( 𝜑  →  - 1  ∈  ℂ ) | 
						
							| 23 | 22 7 2 | mulexpd | ⊢ ( 𝜑  →  ( ( - 1  ·  𝐴 ) ↑ 𝑁 )  =  ( ( - 1 ↑ 𝑁 )  ·  ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 24 | 20 23 | eqtr4d | ⊢ ( 𝜑  →  - ( 𝐴 ↑ 𝑁 )  =  ( ( - 1  ·  𝐴 ) ↑ 𝑁 ) ) | 
						
							| 25 | 10 24 | eqtr4d | ⊢ ( 𝜑  →  ( - 𝐴 ↑ 𝑁 )  =  - ( 𝐴 ↑ 𝑁 ) ) | 
						
							| 26 | 25 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ 𝑁 )  +  ( - 𝐴 ↑ 𝑁 ) )  =  ( ( 𝐴 ↑ 𝑁 )  +  - ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 27 | 26 | eqeq1d | ⊢ ( 𝜑  →  ( ( ( 𝐴 ↑ 𝑁 )  +  ( - 𝐴 ↑ 𝑁 ) )  =  0  ↔  ( ( 𝐴 ↑ 𝑁 )  +  - ( 𝐴 ↑ 𝑁 ) )  =  0 ) ) | 
						
							| 28 | 6 27 | mpbird | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ 𝑁 )  +  ( - 𝐴 ↑ 𝑁 ) )  =  0 ) |