Description: Existence of negative signed real. Part of Proposition 9-4.3 of Gleason p. 126. (Contributed by NM, 2-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | negexsr | ⊢ ( 𝐴 ∈ R → ∃ 𝑥 ∈ R ( 𝐴 +R 𝑥 ) = 0R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | m1r | ⊢ -1R ∈ R | |
| 2 | mulclsr | ⊢ ( ( 𝐴 ∈ R ∧ -1R ∈ R ) → ( 𝐴 ·R -1R ) ∈ R ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ R → ( 𝐴 ·R -1R ) ∈ R ) |
| 4 | pn0sr | ⊢ ( 𝐴 ∈ R → ( 𝐴 +R ( 𝐴 ·R -1R ) ) = 0R ) | |
| 5 | oveq2 | ⊢ ( 𝑥 = ( 𝐴 ·R -1R ) → ( 𝐴 +R 𝑥 ) = ( 𝐴 +R ( 𝐴 ·R -1R ) ) ) | |
| 6 | 5 | eqeq1d | ⊢ ( 𝑥 = ( 𝐴 ·R -1R ) → ( ( 𝐴 +R 𝑥 ) = 0R ↔ ( 𝐴 +R ( 𝐴 ·R -1R ) ) = 0R ) ) |
| 7 | 6 | rspcev | ⊢ ( ( ( 𝐴 ·R -1R ) ∈ R ∧ ( 𝐴 +R ( 𝐴 ·R -1R ) ) = 0R ) → ∃ 𝑥 ∈ R ( 𝐴 +R 𝑥 ) = 0R ) |
| 8 | 3 4 7 | syl2anc | ⊢ ( 𝐴 ∈ R → ∃ 𝑥 ∈ R ( 𝐴 +R 𝑥 ) = 0R ) |