Metamath Proof Explorer


Theorem negexsr

Description: Existence of negative signed real. Part of Proposition 9-4.3 of Gleason p. 126. (Contributed by NM, 2-May-1996) (New usage is discouraged.)

Ref Expression
Assertion negexsr ( 𝐴R → ∃ 𝑥R ( 𝐴 +R 𝑥 ) = 0R )

Proof

Step Hyp Ref Expression
1 m1r -1RR
2 mulclsr ( ( 𝐴R ∧ -1RR ) → ( 𝐴 ·R -1R ) ∈ R )
3 1 2 mpan2 ( 𝐴R → ( 𝐴 ·R -1R ) ∈ R )
4 pn0sr ( 𝐴R → ( 𝐴 +R ( 𝐴 ·R -1R ) ) = 0R )
5 oveq2 ( 𝑥 = ( 𝐴 ·R -1R ) → ( 𝐴 +R 𝑥 ) = ( 𝐴 +R ( 𝐴 ·R -1R ) ) )
6 5 eqeq1d ( 𝑥 = ( 𝐴 ·R -1R ) → ( ( 𝐴 +R 𝑥 ) = 0R ↔ ( 𝐴 +R ( 𝐴 ·R -1R ) ) = 0R ) )
7 6 rspcev ( ( ( 𝐴 ·R -1R ) ∈ R ∧ ( 𝐴 +R ( 𝐴 ·R -1R ) ) = 0R ) → ∃ 𝑥R ( 𝐴 +R 𝑥 ) = 0R )
8 3 4 7 syl2anc ( 𝐴R → ∃ 𝑥R ( 𝐴 +R 𝑥 ) = 0R )