| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negf1o.1 | ⊢ 𝐹  =  ( 𝑥  ∈  𝐴  ↦  - 𝑥 ) | 
						
							| 2 |  | negeq | ⊢ ( 𝑛  =  - 𝑥  →  - 𝑛  =  - - 𝑥 ) | 
						
							| 3 | 2 | eleq1d | ⊢ ( 𝑛  =  - 𝑥  →  ( - 𝑛  ∈  𝐴  ↔  - - 𝑥  ∈  𝐴 ) ) | 
						
							| 4 |  | ssel | ⊢ ( 𝐴  ⊆  ℝ  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  ℝ ) ) | 
						
							| 5 |  | renegcl | ⊢ ( 𝑥  ∈  ℝ  →  - 𝑥  ∈  ℝ ) | 
						
							| 6 | 4 5 | syl6 | ⊢ ( 𝐴  ⊆  ℝ  →  ( 𝑥  ∈  𝐴  →  - 𝑥  ∈  ℝ ) ) | 
						
							| 7 | 6 | imp | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑥  ∈  𝐴 )  →  - 𝑥  ∈  ℝ ) | 
						
							| 8 | 4 | imp | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ℝ ) | 
						
							| 9 |  | recn | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℂ ) | 
						
							| 10 |  | negneg | ⊢ ( 𝑥  ∈  ℂ  →  - - 𝑥  =  𝑥 ) | 
						
							| 11 | 10 | eqcomd | ⊢ ( 𝑥  ∈  ℂ  →  𝑥  =  - - 𝑥 ) | 
						
							| 12 | 9 11 | syl | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  =  - - 𝑥 ) | 
						
							| 13 | 12 | eleq1d | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝑥  ∈  𝐴  ↔  - - 𝑥  ∈  𝐴 ) ) | 
						
							| 14 | 13 | biimpcd | ⊢ ( 𝑥  ∈  𝐴  →  ( 𝑥  ∈  ℝ  →  - - 𝑥  ∈  𝐴 ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ∈  ℝ  →  - - 𝑥  ∈  𝐴 ) ) | 
						
							| 16 | 8 15 | mpd | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑥  ∈  𝐴 )  →  - - 𝑥  ∈  𝐴 ) | 
						
							| 17 | 3 7 16 | elrabd | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑥  ∈  𝐴 )  →  - 𝑥  ∈  { 𝑛  ∈  ℝ  ∣  - 𝑛  ∈  𝐴 } ) | 
						
							| 18 |  | negeq | ⊢ ( 𝑛  =  𝑦  →  - 𝑛  =  - 𝑦 ) | 
						
							| 19 | 18 | eleq1d | ⊢ ( 𝑛  =  𝑦  →  ( - 𝑛  ∈  𝐴  ↔  - 𝑦  ∈  𝐴 ) ) | 
						
							| 20 | 19 | elrab | ⊢ ( 𝑦  ∈  { 𝑛  ∈  ℝ  ∣  - 𝑛  ∈  𝐴 }  ↔  ( 𝑦  ∈  ℝ  ∧  - 𝑦  ∈  𝐴 ) ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝑦  ∈  ℝ  ∧  - 𝑦  ∈  𝐴 )  →  - 𝑦  ∈  𝐴 ) | 
						
							| 22 | 21 | a1i | ⊢ ( 𝐴  ⊆  ℝ  →  ( ( 𝑦  ∈  ℝ  ∧  - 𝑦  ∈  𝐴 )  →  - 𝑦  ∈  𝐴 ) ) | 
						
							| 23 | 20 22 | biimtrid | ⊢ ( 𝐴  ⊆  ℝ  →  ( 𝑦  ∈  { 𝑛  ∈  ℝ  ∣  - 𝑛  ∈  𝐴 }  →  - 𝑦  ∈  𝐴 ) ) | 
						
							| 24 | 23 | imp | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑦  ∈  { 𝑛  ∈  ℝ  ∣  - 𝑛  ∈  𝐴 } )  →  - 𝑦  ∈  𝐴 ) | 
						
							| 25 | 4 9 | syl6com | ⊢ ( 𝑥  ∈  𝐴  →  ( 𝐴  ⊆  ℝ  →  𝑥  ∈  ℂ ) ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( ( 𝑦  ∈  ℝ  ∧  - 𝑦  ∈  𝐴 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐴  ⊆  ℝ  →  𝑥  ∈  ℂ ) ) | 
						
							| 27 | 26 | imp | ⊢ ( ( ( ( 𝑦  ∈  ℝ  ∧  - 𝑦  ∈  𝐴 )  ∧  𝑥  ∈  𝐴 )  ∧  𝐴  ⊆  ℝ )  →  𝑥  ∈  ℂ ) | 
						
							| 28 |  | recn | ⊢ ( 𝑦  ∈  ℝ  →  𝑦  ∈  ℂ ) | 
						
							| 29 | 28 | ad3antrrr | ⊢ ( ( ( ( 𝑦  ∈  ℝ  ∧  - 𝑦  ∈  𝐴 )  ∧  𝑥  ∈  𝐴 )  ∧  𝐴  ⊆  ℝ )  →  𝑦  ∈  ℂ ) | 
						
							| 30 |  | negcon2 | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑥  =  - 𝑦  ↔  𝑦  =  - 𝑥 ) ) | 
						
							| 31 | 27 29 30 | syl2anc | ⊢ ( ( ( ( 𝑦  ∈  ℝ  ∧  - 𝑦  ∈  𝐴 )  ∧  𝑥  ∈  𝐴 )  ∧  𝐴  ⊆  ℝ )  →  ( 𝑥  =  - 𝑦  ↔  𝑦  =  - 𝑥 ) ) | 
						
							| 32 | 31 | exp31 | ⊢ ( ( 𝑦  ∈  ℝ  ∧  - 𝑦  ∈  𝐴 )  →  ( 𝑥  ∈  𝐴  →  ( 𝐴  ⊆  ℝ  →  ( 𝑥  =  - 𝑦  ↔  𝑦  =  - 𝑥 ) ) ) ) | 
						
							| 33 | 20 32 | sylbi | ⊢ ( 𝑦  ∈  { 𝑛  ∈  ℝ  ∣  - 𝑛  ∈  𝐴 }  →  ( 𝑥  ∈  𝐴  →  ( 𝐴  ⊆  ℝ  →  ( 𝑥  =  - 𝑦  ↔  𝑦  =  - 𝑥 ) ) ) ) | 
						
							| 34 | 33 | impcom | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  { 𝑛  ∈  ℝ  ∣  - 𝑛  ∈  𝐴 } )  →  ( 𝐴  ⊆  ℝ  →  ( 𝑥  =  - 𝑦  ↔  𝑦  =  - 𝑥 ) ) ) | 
						
							| 35 | 34 | impcom | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  { 𝑛  ∈  ℝ  ∣  - 𝑛  ∈  𝐴 } ) )  →  ( 𝑥  =  - 𝑦  ↔  𝑦  =  - 𝑥 ) ) | 
						
							| 36 | 1 17 24 35 | f1o2d | ⊢ ( 𝐴  ⊆  ℝ  →  𝐹 : 𝐴 –1-1-onto→ { 𝑛  ∈  ℝ  ∣  - 𝑛  ∈  𝐴 } ) |