Step |
Hyp |
Ref |
Expression |
1 |
|
negfcncf.1 |
⊢ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ - ( 𝐹 ‘ 𝑥 ) ) |
2 |
|
cncff |
⊢ ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ ) |
3 |
2
|
ffvelrnda |
⊢ ( ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
4 |
2
|
feqmptd |
⊢ ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
5 |
|
eqidd |
⊢ ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) → ( 𝑦 ∈ ℂ ↦ - 𝑦 ) = ( 𝑦 ∈ ℂ ↦ - 𝑦 ) ) |
6 |
|
negeq |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → - 𝑦 = - ( 𝐹 ‘ 𝑥 ) ) |
7 |
3 4 5 6
|
fmptco |
⊢ ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) → ( ( 𝑦 ∈ ℂ ↦ - 𝑦 ) ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ - ( 𝐹 ‘ 𝑥 ) ) ) |
8 |
7 1
|
eqtr4di |
⊢ ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) → ( ( 𝑦 ∈ ℂ ↦ - 𝑦 ) ∘ 𝐹 ) = 𝐺 ) |
9 |
|
id |
⊢ ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) → 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) |
10 |
|
ssid |
⊢ ℂ ⊆ ℂ |
11 |
|
eqid |
⊢ ( 𝑦 ∈ ℂ ↦ - 𝑦 ) = ( 𝑦 ∈ ℂ ↦ - 𝑦 ) |
12 |
11
|
negcncf |
⊢ ( ℂ ⊆ ℂ → ( 𝑦 ∈ ℂ ↦ - 𝑦 ) ∈ ( ℂ –cn→ ℂ ) ) |
13 |
10 12
|
mp1i |
⊢ ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) → ( 𝑦 ∈ ℂ ↦ - 𝑦 ) ∈ ( ℂ –cn→ ℂ ) ) |
14 |
9 13
|
cncfco |
⊢ ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) → ( ( 𝑦 ∈ ℂ ↦ - 𝑦 ) ∘ 𝐹 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
15 |
8 14
|
eqeltrrd |
⊢ ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) → 𝐺 ∈ ( 𝐴 –cn→ ℂ ) ) |