Metamath Proof Explorer


Theorem negfi

Description: The negation of a finite set of real numbers is finite. (Contributed by AV, 9-Aug-2020)

Ref Expression
Assertion negfi ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → { 𝑛 ∈ ℝ ∣ - 𝑛𝐴 } ∈ Fin )

Proof

Step Hyp Ref Expression
1 ssel ( 𝐴 ⊆ ℝ → ( 𝑎𝐴𝑎 ∈ ℝ ) )
2 renegcl ( 𝑎 ∈ ℝ → - 𝑎 ∈ ℝ )
3 1 2 syl6 ( 𝐴 ⊆ ℝ → ( 𝑎𝐴 → - 𝑎 ∈ ℝ ) )
4 3 ralrimiv ( 𝐴 ⊆ ℝ → ∀ 𝑎𝐴 - 𝑎 ∈ ℝ )
5 dmmptg ( ∀ 𝑎𝐴 - 𝑎 ∈ ℝ → dom ( 𝑎𝐴 ↦ - 𝑎 ) = 𝐴 )
6 4 5 syl ( 𝐴 ⊆ ℝ → dom ( 𝑎𝐴 ↦ - 𝑎 ) = 𝐴 )
7 6 eqcomd ( 𝐴 ⊆ ℝ → 𝐴 = dom ( 𝑎𝐴 ↦ - 𝑎 ) )
8 7 eleq1d ( 𝐴 ⊆ ℝ → ( 𝐴 ∈ Fin ↔ dom ( 𝑎𝐴 ↦ - 𝑎 ) ∈ Fin ) )
9 funmpt Fun ( 𝑎𝐴 ↦ - 𝑎 )
10 fundmfibi ( Fun ( 𝑎𝐴 ↦ - 𝑎 ) → ( ( 𝑎𝐴 ↦ - 𝑎 ) ∈ Fin ↔ dom ( 𝑎𝐴 ↦ - 𝑎 ) ∈ Fin ) )
11 9 10 mp1i ( 𝐴 ⊆ ℝ → ( ( 𝑎𝐴 ↦ - 𝑎 ) ∈ Fin ↔ dom ( 𝑎𝐴 ↦ - 𝑎 ) ∈ Fin ) )
12 8 11 bitr4d ( 𝐴 ⊆ ℝ → ( 𝐴 ∈ Fin ↔ ( 𝑎𝐴 ↦ - 𝑎 ) ∈ Fin ) )
13 reex ℝ ∈ V
14 13 ssex ( 𝐴 ⊆ ℝ → 𝐴 ∈ V )
15 14 mptexd ( 𝐴 ⊆ ℝ → ( 𝑎𝐴 ↦ - 𝑎 ) ∈ V )
16 eqid ( 𝑎𝐴 ↦ - 𝑎 ) = ( 𝑎𝐴 ↦ - 𝑎 )
17 16 negf1o ( 𝐴 ⊆ ℝ → ( 𝑎𝐴 ↦ - 𝑎 ) : 𝐴1-1-onto→ { 𝑥 ∈ ℝ ∣ - 𝑥𝐴 } )
18 f1of1 ( ( 𝑎𝐴 ↦ - 𝑎 ) : 𝐴1-1-onto→ { 𝑥 ∈ ℝ ∣ - 𝑥𝐴 } → ( 𝑎𝐴 ↦ - 𝑎 ) : 𝐴1-1→ { 𝑥 ∈ ℝ ∣ - 𝑥𝐴 } )
19 17 18 syl ( 𝐴 ⊆ ℝ → ( 𝑎𝐴 ↦ - 𝑎 ) : 𝐴1-1→ { 𝑥 ∈ ℝ ∣ - 𝑥𝐴 } )
20 f1vrnfibi ( ( ( 𝑎𝐴 ↦ - 𝑎 ) ∈ V ∧ ( 𝑎𝐴 ↦ - 𝑎 ) : 𝐴1-1→ { 𝑥 ∈ ℝ ∣ - 𝑥𝐴 } ) → ( ( 𝑎𝐴 ↦ - 𝑎 ) ∈ Fin ↔ ran ( 𝑎𝐴 ↦ - 𝑎 ) ∈ Fin ) )
21 15 19 20 syl2anc ( 𝐴 ⊆ ℝ → ( ( 𝑎𝐴 ↦ - 𝑎 ) ∈ Fin ↔ ran ( 𝑎𝐴 ↦ - 𝑎 ) ∈ Fin ) )
22 1 imp ( ( 𝐴 ⊆ ℝ ∧ 𝑎𝐴 ) → 𝑎 ∈ ℝ )
23 2 adantl ( ( ( 𝐴 ⊆ ℝ ∧ 𝑎𝐴 ) ∧ 𝑎 ∈ ℝ ) → - 𝑎 ∈ ℝ )
24 recn ( 𝑎 ∈ ℝ → 𝑎 ∈ ℂ )
25 24 negnegd ( 𝑎 ∈ ℝ → - - 𝑎 = 𝑎 )
26 25 eqcomd ( 𝑎 ∈ ℝ → 𝑎 = - - 𝑎 )
27 26 eleq1d ( 𝑎 ∈ ℝ → ( 𝑎𝐴 ↔ - - 𝑎𝐴 ) )
28 27 biimpcd ( 𝑎𝐴 → ( 𝑎 ∈ ℝ → - - 𝑎𝐴 ) )
29 28 adantl ( ( 𝐴 ⊆ ℝ ∧ 𝑎𝐴 ) → ( 𝑎 ∈ ℝ → - - 𝑎𝐴 ) )
30 29 imp ( ( ( 𝐴 ⊆ ℝ ∧ 𝑎𝐴 ) ∧ 𝑎 ∈ ℝ ) → - - 𝑎𝐴 )
31 23 30 jca ( ( ( 𝐴 ⊆ ℝ ∧ 𝑎𝐴 ) ∧ 𝑎 ∈ ℝ ) → ( - 𝑎 ∈ ℝ ∧ - - 𝑎𝐴 ) )
32 22 31 mpdan ( ( 𝐴 ⊆ ℝ ∧ 𝑎𝐴 ) → ( - 𝑎 ∈ ℝ ∧ - - 𝑎𝐴 ) )
33 eleq1 ( 𝑛 = - 𝑎 → ( 𝑛 ∈ ℝ ↔ - 𝑎 ∈ ℝ ) )
34 negeq ( 𝑛 = - 𝑎 → - 𝑛 = - - 𝑎 )
35 34 eleq1d ( 𝑛 = - 𝑎 → ( - 𝑛𝐴 ↔ - - 𝑎𝐴 ) )
36 33 35 anbi12d ( 𝑛 = - 𝑎 → ( ( 𝑛 ∈ ℝ ∧ - 𝑛𝐴 ) ↔ ( - 𝑎 ∈ ℝ ∧ - - 𝑎𝐴 ) ) )
37 32 36 syl5ibrcom ( ( 𝐴 ⊆ ℝ ∧ 𝑎𝐴 ) → ( 𝑛 = - 𝑎 → ( 𝑛 ∈ ℝ ∧ - 𝑛𝐴 ) ) )
38 37 rexlimdva ( 𝐴 ⊆ ℝ → ( ∃ 𝑎𝐴 𝑛 = - 𝑎 → ( 𝑛 ∈ ℝ ∧ - 𝑛𝐴 ) ) )
39 simprr ( ( 𝐴 ⊆ ℝ ∧ ( 𝑛 ∈ ℝ ∧ - 𝑛𝐴 ) ) → - 𝑛𝐴 )
40 negeq ( 𝑎 = - 𝑛 → - 𝑎 = - - 𝑛 )
41 40 eqeq2d ( 𝑎 = - 𝑛 → ( 𝑛 = - 𝑎𝑛 = - - 𝑛 ) )
42 41 adantl ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑛 ∈ ℝ ∧ - 𝑛𝐴 ) ) ∧ 𝑎 = - 𝑛 ) → ( 𝑛 = - 𝑎𝑛 = - - 𝑛 ) )
43 recn ( 𝑛 ∈ ℝ → 𝑛 ∈ ℂ )
44 negneg ( 𝑛 ∈ ℂ → - - 𝑛 = 𝑛 )
45 44 eqcomd ( 𝑛 ∈ ℂ → 𝑛 = - - 𝑛 )
46 43 45 syl ( 𝑛 ∈ ℝ → 𝑛 = - - 𝑛 )
47 46 ad2antrl ( ( 𝐴 ⊆ ℝ ∧ ( 𝑛 ∈ ℝ ∧ - 𝑛𝐴 ) ) → 𝑛 = - - 𝑛 )
48 39 42 47 rspcedvd ( ( 𝐴 ⊆ ℝ ∧ ( 𝑛 ∈ ℝ ∧ - 𝑛𝐴 ) ) → ∃ 𝑎𝐴 𝑛 = - 𝑎 )
49 48 ex ( 𝐴 ⊆ ℝ → ( ( 𝑛 ∈ ℝ ∧ - 𝑛𝐴 ) → ∃ 𝑎𝐴 𝑛 = - 𝑎 ) )
50 38 49 impbid ( 𝐴 ⊆ ℝ → ( ∃ 𝑎𝐴 𝑛 = - 𝑎 ↔ ( 𝑛 ∈ ℝ ∧ - 𝑛𝐴 ) ) )
51 50 abbidv ( 𝐴 ⊆ ℝ → { 𝑛 ∣ ∃ 𝑎𝐴 𝑛 = - 𝑎 } = { 𝑛 ∣ ( 𝑛 ∈ ℝ ∧ - 𝑛𝐴 ) } )
52 16 rnmpt ran ( 𝑎𝐴 ↦ - 𝑎 ) = { 𝑛 ∣ ∃ 𝑎𝐴 𝑛 = - 𝑎 }
53 df-rab { 𝑛 ∈ ℝ ∣ - 𝑛𝐴 } = { 𝑛 ∣ ( 𝑛 ∈ ℝ ∧ - 𝑛𝐴 ) }
54 51 52 53 3eqtr4g ( 𝐴 ⊆ ℝ → ran ( 𝑎𝐴 ↦ - 𝑎 ) = { 𝑛 ∈ ℝ ∣ - 𝑛𝐴 } )
55 54 eleq1d ( 𝐴 ⊆ ℝ → ( ran ( 𝑎𝐴 ↦ - 𝑎 ) ∈ Fin ↔ { 𝑛 ∈ ℝ ∣ - 𝑛𝐴 } ∈ Fin ) )
56 12 21 55 3bitrd ( 𝐴 ⊆ ℝ → ( 𝐴 ∈ Fin ↔ { 𝑛 ∈ ℝ ∣ - 𝑛𝐴 } ∈ Fin ) )
57 56 biimpa ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → { 𝑛 ∈ ℝ ∣ - 𝑛𝐴 } ∈ Fin )