| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssel | ⊢ ( 𝐴  ⊆  ℝ  →  ( 𝑎  ∈  𝐴  →  𝑎  ∈  ℝ ) ) | 
						
							| 2 |  | renegcl | ⊢ ( 𝑎  ∈  ℝ  →  - 𝑎  ∈  ℝ ) | 
						
							| 3 | 1 2 | syl6 | ⊢ ( 𝐴  ⊆  ℝ  →  ( 𝑎  ∈  𝐴  →  - 𝑎  ∈  ℝ ) ) | 
						
							| 4 | 3 | ralrimiv | ⊢ ( 𝐴  ⊆  ℝ  →  ∀ 𝑎  ∈  𝐴 - 𝑎  ∈  ℝ ) | 
						
							| 5 |  | dmmptg | ⊢ ( ∀ 𝑎  ∈  𝐴 - 𝑎  ∈  ℝ  →  dom  ( 𝑎  ∈  𝐴  ↦  - 𝑎 )  =  𝐴 ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝐴  ⊆  ℝ  →  dom  ( 𝑎  ∈  𝐴  ↦  - 𝑎 )  =  𝐴 ) | 
						
							| 7 | 6 | eqcomd | ⊢ ( 𝐴  ⊆  ℝ  →  𝐴  =  dom  ( 𝑎  ∈  𝐴  ↦  - 𝑎 ) ) | 
						
							| 8 | 7 | eleq1d | ⊢ ( 𝐴  ⊆  ℝ  →  ( 𝐴  ∈  Fin  ↔  dom  ( 𝑎  ∈  𝐴  ↦  - 𝑎 )  ∈  Fin ) ) | 
						
							| 9 |  | funmpt | ⊢ Fun  ( 𝑎  ∈  𝐴  ↦  - 𝑎 ) | 
						
							| 10 |  | fundmfibi | ⊢ ( Fun  ( 𝑎  ∈  𝐴  ↦  - 𝑎 )  →  ( ( 𝑎  ∈  𝐴  ↦  - 𝑎 )  ∈  Fin  ↔  dom  ( 𝑎  ∈  𝐴  ↦  - 𝑎 )  ∈  Fin ) ) | 
						
							| 11 | 9 10 | mp1i | ⊢ ( 𝐴  ⊆  ℝ  →  ( ( 𝑎  ∈  𝐴  ↦  - 𝑎 )  ∈  Fin  ↔  dom  ( 𝑎  ∈  𝐴  ↦  - 𝑎 )  ∈  Fin ) ) | 
						
							| 12 | 8 11 | bitr4d | ⊢ ( 𝐴  ⊆  ℝ  →  ( 𝐴  ∈  Fin  ↔  ( 𝑎  ∈  𝐴  ↦  - 𝑎 )  ∈  Fin ) ) | 
						
							| 13 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 14 | 13 | ssex | ⊢ ( 𝐴  ⊆  ℝ  →  𝐴  ∈  V ) | 
						
							| 15 | 14 | mptexd | ⊢ ( 𝐴  ⊆  ℝ  →  ( 𝑎  ∈  𝐴  ↦  - 𝑎 )  ∈  V ) | 
						
							| 16 |  | eqid | ⊢ ( 𝑎  ∈  𝐴  ↦  - 𝑎 )  =  ( 𝑎  ∈  𝐴  ↦  - 𝑎 ) | 
						
							| 17 | 16 | negf1o | ⊢ ( 𝐴  ⊆  ℝ  →  ( 𝑎  ∈  𝐴  ↦  - 𝑎 ) : 𝐴 –1-1-onto→ { 𝑥  ∈  ℝ  ∣  - 𝑥  ∈  𝐴 } ) | 
						
							| 18 |  | f1of1 | ⊢ ( ( 𝑎  ∈  𝐴  ↦  - 𝑎 ) : 𝐴 –1-1-onto→ { 𝑥  ∈  ℝ  ∣  - 𝑥  ∈  𝐴 }  →  ( 𝑎  ∈  𝐴  ↦  - 𝑎 ) : 𝐴 –1-1→ { 𝑥  ∈  ℝ  ∣  - 𝑥  ∈  𝐴 } ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝐴  ⊆  ℝ  →  ( 𝑎  ∈  𝐴  ↦  - 𝑎 ) : 𝐴 –1-1→ { 𝑥  ∈  ℝ  ∣  - 𝑥  ∈  𝐴 } ) | 
						
							| 20 |  | f1vrnfibi | ⊢ ( ( ( 𝑎  ∈  𝐴  ↦  - 𝑎 )  ∈  V  ∧  ( 𝑎  ∈  𝐴  ↦  - 𝑎 ) : 𝐴 –1-1→ { 𝑥  ∈  ℝ  ∣  - 𝑥  ∈  𝐴 } )  →  ( ( 𝑎  ∈  𝐴  ↦  - 𝑎 )  ∈  Fin  ↔  ran  ( 𝑎  ∈  𝐴  ↦  - 𝑎 )  ∈  Fin ) ) | 
						
							| 21 | 15 19 20 | syl2anc | ⊢ ( 𝐴  ⊆  ℝ  →  ( ( 𝑎  ∈  𝐴  ↦  - 𝑎 )  ∈  Fin  ↔  ran  ( 𝑎  ∈  𝐴  ↦  - 𝑎 )  ∈  Fin ) ) | 
						
							| 22 | 1 | imp | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑎  ∈  𝐴 )  →  𝑎  ∈  ℝ ) | 
						
							| 23 | 2 | adantl | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝑎  ∈  𝐴 )  ∧  𝑎  ∈  ℝ )  →  - 𝑎  ∈  ℝ ) | 
						
							| 24 |  | recn | ⊢ ( 𝑎  ∈  ℝ  →  𝑎  ∈  ℂ ) | 
						
							| 25 | 24 | negnegd | ⊢ ( 𝑎  ∈  ℝ  →  - - 𝑎  =  𝑎 ) | 
						
							| 26 | 25 | eqcomd | ⊢ ( 𝑎  ∈  ℝ  →  𝑎  =  - - 𝑎 ) | 
						
							| 27 | 26 | eleq1d | ⊢ ( 𝑎  ∈  ℝ  →  ( 𝑎  ∈  𝐴  ↔  - - 𝑎  ∈  𝐴 ) ) | 
						
							| 28 | 27 | biimpcd | ⊢ ( 𝑎  ∈  𝐴  →  ( 𝑎  ∈  ℝ  →  - - 𝑎  ∈  𝐴 ) ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑎  ∈  𝐴 )  →  ( 𝑎  ∈  ℝ  →  - - 𝑎  ∈  𝐴 ) ) | 
						
							| 30 | 29 | imp | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝑎  ∈  𝐴 )  ∧  𝑎  ∈  ℝ )  →  - - 𝑎  ∈  𝐴 ) | 
						
							| 31 | 23 30 | jca | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝑎  ∈  𝐴 )  ∧  𝑎  ∈  ℝ )  →  ( - 𝑎  ∈  ℝ  ∧  - - 𝑎  ∈  𝐴 ) ) | 
						
							| 32 | 22 31 | mpdan | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑎  ∈  𝐴 )  →  ( - 𝑎  ∈  ℝ  ∧  - - 𝑎  ∈  𝐴 ) ) | 
						
							| 33 |  | eleq1 | ⊢ ( 𝑛  =  - 𝑎  →  ( 𝑛  ∈  ℝ  ↔  - 𝑎  ∈  ℝ ) ) | 
						
							| 34 |  | negeq | ⊢ ( 𝑛  =  - 𝑎  →  - 𝑛  =  - - 𝑎 ) | 
						
							| 35 | 34 | eleq1d | ⊢ ( 𝑛  =  - 𝑎  →  ( - 𝑛  ∈  𝐴  ↔  - - 𝑎  ∈  𝐴 ) ) | 
						
							| 36 | 33 35 | anbi12d | ⊢ ( 𝑛  =  - 𝑎  →  ( ( 𝑛  ∈  ℝ  ∧  - 𝑛  ∈  𝐴 )  ↔  ( - 𝑎  ∈  ℝ  ∧  - - 𝑎  ∈  𝐴 ) ) ) | 
						
							| 37 | 32 36 | syl5ibrcom | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑎  ∈  𝐴 )  →  ( 𝑛  =  - 𝑎  →  ( 𝑛  ∈  ℝ  ∧  - 𝑛  ∈  𝐴 ) ) ) | 
						
							| 38 |  | simprr | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑛  ∈  ℝ  ∧  - 𝑛  ∈  𝐴 ) )  →  - 𝑛  ∈  𝐴 ) | 
						
							| 39 |  | recn | ⊢ ( 𝑛  ∈  ℝ  →  𝑛  ∈  ℂ ) | 
						
							| 40 |  | negneg | ⊢ ( 𝑛  ∈  ℂ  →  - - 𝑛  =  𝑛 ) | 
						
							| 41 | 40 | eqcomd | ⊢ ( 𝑛  ∈  ℂ  →  𝑛  =  - - 𝑛 ) | 
						
							| 42 | 39 41 | syl | ⊢ ( 𝑛  ∈  ℝ  →  𝑛  =  - - 𝑛 ) | 
						
							| 43 | 42 | ad2antrl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑛  ∈  ℝ  ∧  - 𝑛  ∈  𝐴 ) )  →  𝑛  =  - - 𝑛 ) | 
						
							| 44 |  | negeq | ⊢ ( 𝑎  =  - 𝑛  →  - 𝑎  =  - - 𝑛 ) | 
						
							| 45 | 44 | eqeq2d | ⊢ ( 𝑎  =  - 𝑛  →  ( 𝑛  =  - 𝑎  ↔  𝑛  =  - - 𝑛 ) ) | 
						
							| 46 | 37 38 43 45 | rspceb2dv | ⊢ ( 𝐴  ⊆  ℝ  →  ( ∃ 𝑎  ∈  𝐴 𝑛  =  - 𝑎  ↔  ( 𝑛  ∈  ℝ  ∧  - 𝑛  ∈  𝐴 ) ) ) | 
						
							| 47 | 46 | abbidv | ⊢ ( 𝐴  ⊆  ℝ  →  { 𝑛  ∣  ∃ 𝑎  ∈  𝐴 𝑛  =  - 𝑎 }  =  { 𝑛  ∣  ( 𝑛  ∈  ℝ  ∧  - 𝑛  ∈  𝐴 ) } ) | 
						
							| 48 | 16 | rnmpt | ⊢ ran  ( 𝑎  ∈  𝐴  ↦  - 𝑎 )  =  { 𝑛  ∣  ∃ 𝑎  ∈  𝐴 𝑛  =  - 𝑎 } | 
						
							| 49 |  | df-rab | ⊢ { 𝑛  ∈  ℝ  ∣  - 𝑛  ∈  𝐴 }  =  { 𝑛  ∣  ( 𝑛  ∈  ℝ  ∧  - 𝑛  ∈  𝐴 ) } | 
						
							| 50 | 47 48 49 | 3eqtr4g | ⊢ ( 𝐴  ⊆  ℝ  →  ran  ( 𝑎  ∈  𝐴  ↦  - 𝑎 )  =  { 𝑛  ∈  ℝ  ∣  - 𝑛  ∈  𝐴 } ) | 
						
							| 51 | 50 | eleq1d | ⊢ ( 𝐴  ⊆  ℝ  →  ( ran  ( 𝑎  ∈  𝐴  ↦  - 𝑎 )  ∈  Fin  ↔  { 𝑛  ∈  ℝ  ∣  - 𝑛  ∈  𝐴 }  ∈  Fin ) ) | 
						
							| 52 | 12 21 51 | 3bitrd | ⊢ ( 𝐴  ⊆  ℝ  →  ( 𝐴  ∈  Fin  ↔  { 𝑛  ∈  ℝ  ∣  - 𝑛  ∈  𝐴 }  ∈  Fin ) ) | 
						
							| 53 | 52 | biimpa | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ∈  Fin )  →  { 𝑛  ∈  ℝ  ∣  - 𝑛  ∈  𝐴 }  ∈  Fin ) |