Step |
Hyp |
Ref |
Expression |
1 |
|
ssel |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑎 ∈ 𝐴 → 𝑎 ∈ ℝ ) ) |
2 |
|
renegcl |
⊢ ( 𝑎 ∈ ℝ → - 𝑎 ∈ ℝ ) |
3 |
1 2
|
syl6 |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑎 ∈ 𝐴 → - 𝑎 ∈ ℝ ) ) |
4 |
3
|
ralrimiv |
⊢ ( 𝐴 ⊆ ℝ → ∀ 𝑎 ∈ 𝐴 - 𝑎 ∈ ℝ ) |
5 |
|
dmmptg |
⊢ ( ∀ 𝑎 ∈ 𝐴 - 𝑎 ∈ ℝ → dom ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) = 𝐴 ) |
6 |
4 5
|
syl |
⊢ ( 𝐴 ⊆ ℝ → dom ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) = 𝐴 ) |
7 |
6
|
eqcomd |
⊢ ( 𝐴 ⊆ ℝ → 𝐴 = dom ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝐴 ⊆ ℝ → ( 𝐴 ∈ Fin ↔ dom ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) ∈ Fin ) ) |
9 |
|
funmpt |
⊢ Fun ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) |
10 |
|
fundmfibi |
⊢ ( Fun ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) → ( ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) ∈ Fin ↔ dom ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) ∈ Fin ) ) |
11 |
9 10
|
mp1i |
⊢ ( 𝐴 ⊆ ℝ → ( ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) ∈ Fin ↔ dom ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) ∈ Fin ) ) |
12 |
8 11
|
bitr4d |
⊢ ( 𝐴 ⊆ ℝ → ( 𝐴 ∈ Fin ↔ ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) ∈ Fin ) ) |
13 |
|
reex |
⊢ ℝ ∈ V |
14 |
13
|
ssex |
⊢ ( 𝐴 ⊆ ℝ → 𝐴 ∈ V ) |
15 |
14
|
mptexd |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) ∈ V ) |
16 |
|
eqid |
⊢ ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) = ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) |
17 |
16
|
negf1o |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) : 𝐴 –1-1-onto→ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ) |
18 |
|
f1of1 |
⊢ ( ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) : 𝐴 –1-1-onto→ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } → ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) : 𝐴 –1-1→ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ) |
19 |
17 18
|
syl |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) : 𝐴 –1-1→ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ) |
20 |
|
f1vrnfibi |
⊢ ( ( ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) ∈ V ∧ ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) : 𝐴 –1-1→ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ) → ( ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) ∈ Fin ↔ ran ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) ∈ Fin ) ) |
21 |
15 19 20
|
syl2anc |
⊢ ( 𝐴 ⊆ ℝ → ( ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) ∈ Fin ↔ ran ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) ∈ Fin ) ) |
22 |
1
|
imp |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ ℝ ) |
23 |
2
|
adantl |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑎 ∈ ℝ ) → - 𝑎 ∈ ℝ ) |
24 |
|
recn |
⊢ ( 𝑎 ∈ ℝ → 𝑎 ∈ ℂ ) |
25 |
24
|
negnegd |
⊢ ( 𝑎 ∈ ℝ → - - 𝑎 = 𝑎 ) |
26 |
25
|
eqcomd |
⊢ ( 𝑎 ∈ ℝ → 𝑎 = - - 𝑎 ) |
27 |
26
|
eleq1d |
⊢ ( 𝑎 ∈ ℝ → ( 𝑎 ∈ 𝐴 ↔ - - 𝑎 ∈ 𝐴 ) ) |
28 |
27
|
biimpcd |
⊢ ( 𝑎 ∈ 𝐴 → ( 𝑎 ∈ ℝ → - - 𝑎 ∈ 𝐴 ) ) |
29 |
28
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 ∈ ℝ → - - 𝑎 ∈ 𝐴 ) ) |
30 |
29
|
imp |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑎 ∈ ℝ ) → - - 𝑎 ∈ 𝐴 ) |
31 |
23 30
|
jca |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑎 ∈ ℝ ) → ( - 𝑎 ∈ ℝ ∧ - - 𝑎 ∈ 𝐴 ) ) |
32 |
22 31
|
mpdan |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴 ) → ( - 𝑎 ∈ ℝ ∧ - - 𝑎 ∈ 𝐴 ) ) |
33 |
|
eleq1 |
⊢ ( 𝑛 = - 𝑎 → ( 𝑛 ∈ ℝ ↔ - 𝑎 ∈ ℝ ) ) |
34 |
|
negeq |
⊢ ( 𝑛 = - 𝑎 → - 𝑛 = - - 𝑎 ) |
35 |
34
|
eleq1d |
⊢ ( 𝑛 = - 𝑎 → ( - 𝑛 ∈ 𝐴 ↔ - - 𝑎 ∈ 𝐴 ) ) |
36 |
33 35
|
anbi12d |
⊢ ( 𝑛 = - 𝑎 → ( ( 𝑛 ∈ ℝ ∧ - 𝑛 ∈ 𝐴 ) ↔ ( - 𝑎 ∈ ℝ ∧ - - 𝑎 ∈ 𝐴 ) ) ) |
37 |
32 36
|
syl5ibrcom |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴 ) → ( 𝑛 = - 𝑎 → ( 𝑛 ∈ ℝ ∧ - 𝑛 ∈ 𝐴 ) ) ) |
38 |
37
|
rexlimdva |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑎 ∈ 𝐴 𝑛 = - 𝑎 → ( 𝑛 ∈ ℝ ∧ - 𝑛 ∈ 𝐴 ) ) ) |
39 |
|
simprr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑛 ∈ ℝ ∧ - 𝑛 ∈ 𝐴 ) ) → - 𝑛 ∈ 𝐴 ) |
40 |
|
negeq |
⊢ ( 𝑎 = - 𝑛 → - 𝑎 = - - 𝑛 ) |
41 |
40
|
eqeq2d |
⊢ ( 𝑎 = - 𝑛 → ( 𝑛 = - 𝑎 ↔ 𝑛 = - - 𝑛 ) ) |
42 |
41
|
adantl |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑛 ∈ ℝ ∧ - 𝑛 ∈ 𝐴 ) ) ∧ 𝑎 = - 𝑛 ) → ( 𝑛 = - 𝑎 ↔ 𝑛 = - - 𝑛 ) ) |
43 |
|
recn |
⊢ ( 𝑛 ∈ ℝ → 𝑛 ∈ ℂ ) |
44 |
|
negneg |
⊢ ( 𝑛 ∈ ℂ → - - 𝑛 = 𝑛 ) |
45 |
44
|
eqcomd |
⊢ ( 𝑛 ∈ ℂ → 𝑛 = - - 𝑛 ) |
46 |
43 45
|
syl |
⊢ ( 𝑛 ∈ ℝ → 𝑛 = - - 𝑛 ) |
47 |
46
|
ad2antrl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑛 ∈ ℝ ∧ - 𝑛 ∈ 𝐴 ) ) → 𝑛 = - - 𝑛 ) |
48 |
39 42 47
|
rspcedvd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑛 ∈ ℝ ∧ - 𝑛 ∈ 𝐴 ) ) → ∃ 𝑎 ∈ 𝐴 𝑛 = - 𝑎 ) |
49 |
48
|
ex |
⊢ ( 𝐴 ⊆ ℝ → ( ( 𝑛 ∈ ℝ ∧ - 𝑛 ∈ 𝐴 ) → ∃ 𝑎 ∈ 𝐴 𝑛 = - 𝑎 ) ) |
50 |
38 49
|
impbid |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑎 ∈ 𝐴 𝑛 = - 𝑎 ↔ ( 𝑛 ∈ ℝ ∧ - 𝑛 ∈ 𝐴 ) ) ) |
51 |
50
|
abbidv |
⊢ ( 𝐴 ⊆ ℝ → { 𝑛 ∣ ∃ 𝑎 ∈ 𝐴 𝑛 = - 𝑎 } = { 𝑛 ∣ ( 𝑛 ∈ ℝ ∧ - 𝑛 ∈ 𝐴 ) } ) |
52 |
16
|
rnmpt |
⊢ ran ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) = { 𝑛 ∣ ∃ 𝑎 ∈ 𝐴 𝑛 = - 𝑎 } |
53 |
|
df-rab |
⊢ { 𝑛 ∈ ℝ ∣ - 𝑛 ∈ 𝐴 } = { 𝑛 ∣ ( 𝑛 ∈ ℝ ∧ - 𝑛 ∈ 𝐴 ) } |
54 |
51 52 53
|
3eqtr4g |
⊢ ( 𝐴 ⊆ ℝ → ran ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) = { 𝑛 ∈ ℝ ∣ - 𝑛 ∈ 𝐴 } ) |
55 |
54
|
eleq1d |
⊢ ( 𝐴 ⊆ ℝ → ( ran ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) ∈ Fin ↔ { 𝑛 ∈ ℝ ∣ - 𝑛 ∈ 𝐴 } ∈ Fin ) ) |
56 |
12 21 55
|
3bitrd |
⊢ ( 𝐴 ⊆ ℝ → ( 𝐴 ∈ Fin ↔ { 𝑛 ∈ ℝ ∣ - 𝑛 ∈ 𝐴 } ∈ Fin ) ) |
57 |
56
|
biimpa |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → { 𝑛 ∈ ℝ ∣ - 𝑛 ∈ 𝐴 } ∈ Fin ) |