Description: Negating one operand of the gcd operator does not alter the result. (Contributed by Paul Chapman, 22-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | neggcd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( - 𝑀 gcd 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gcdneg | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 gcd - 𝑀 ) = ( 𝑁 gcd 𝑀 ) ) | |
2 | 1 | ancoms | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 gcd - 𝑀 ) = ( 𝑁 gcd 𝑀 ) ) |
3 | znegcl | ⊢ ( 𝑀 ∈ ℤ → - 𝑀 ∈ ℤ ) | |
4 | gcdcom | ⊢ ( ( - 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( - 𝑀 gcd 𝑁 ) = ( 𝑁 gcd - 𝑀 ) ) | |
5 | 3 4 | sylan | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( - 𝑀 gcd 𝑁 ) = ( 𝑁 gcd - 𝑀 ) ) |
6 | gcdcom | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) = ( 𝑁 gcd 𝑀 ) ) | |
7 | 2 5 6 | 3eqtr4d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( - 𝑀 gcd 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) |