Metamath Proof Explorer


Theorem neghalfpire

Description: -u _pi / 2 is real. (Contributed by David A. Wheeler, 8-Dec-2018)

Ref Expression
Assertion neghalfpire - ( π / 2 ) ∈ ℝ

Proof

Step Hyp Ref Expression
1 halfpire ( π / 2 ) ∈ ℝ
2 1 renegcli - ( π / 2 ) ∈ ℝ