Metamath Proof Explorer


Theorem negid

Description: Addition of a number and its negative. (Contributed by NM, 14-Mar-2005)

Ref Expression
Assertion negid ( 𝐴 ∈ ℂ → ( 𝐴 + - 𝐴 ) = 0 )

Proof

Step Hyp Ref Expression
1 df-neg - 𝐴 = ( 0 − 𝐴 )
2 1 oveq2i ( 𝐴 + - 𝐴 ) = ( 𝐴 + ( 0 − 𝐴 ) )
3 0cn 0 ∈ ℂ
4 pncan3 ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℂ ) → ( 𝐴 + ( 0 − 𝐴 ) ) = 0 )
5 3 4 mpan2 ( 𝐴 ∈ ℂ → ( 𝐴 + ( 0 − 𝐴 ) ) = 0 )
6 2 5 eqtrid ( 𝐴 ∈ ℂ → ( 𝐴 + - 𝐴 ) = 0 )