Step |
Hyp |
Ref |
Expression |
1 |
|
neglimc.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
2 |
|
neglimc.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) |
3 |
|
neglimc.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
4 |
|
neglimc.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐹 limℂ 𝐷 ) ) |
5 |
|
limccl |
⊢ ( 𝐹 limℂ 𝐷 ) ⊆ ℂ |
6 |
5 4
|
sselid |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
7 |
6
|
negcld |
⊢ ( 𝜑 → - 𝐶 ∈ ℂ ) |
8 |
3 1
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
9 |
1 3 4
|
limcmptdm |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
10 |
|
limcrcl |
⊢ ( 𝐶 ∈ ( 𝐹 limℂ 𝐷 ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ ) ) |
11 |
4 10
|
syl |
⊢ ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ ) ) |
12 |
11
|
simp3d |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
13 |
8 9 12
|
ellimc3 |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐹 limℂ 𝐷 ) ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ 𝐴 ( ( 𝑣 ≠ 𝐷 ∧ ( abs ‘ ( 𝑣 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐶 ) ) < 𝑦 ) ) ) ) |
14 |
4 13
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ 𝐴 ( ( 𝑣 ≠ 𝐷 ∧ ( abs ‘ ( 𝑣 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐶 ) ) < 𝑦 ) ) ) |
15 |
14
|
simprd |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ 𝐴 ( ( 𝑣 ≠ 𝐷 ∧ ( abs ‘ ( 𝑣 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐶 ) ) < 𝑦 ) ) |
16 |
15
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ 𝐴 ( ( 𝑣 ≠ 𝐷 ∧ ( abs ‘ ( 𝑣 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐶 ) ) < 𝑦 ) ) |
17 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑣 ∈ 𝐴 ) → 𝜑 ) |
18 |
17
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑣 ∈ 𝐴 ) ∧ ( ( 𝑣 ≠ 𝐷 ∧ ( abs ‘ ( 𝑣 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐶 ) ) < 𝑦 ) ∧ ( 𝑣 ≠ 𝐷 ∧ ( abs ‘ ( 𝑣 − 𝐷 ) ) < 𝑤 ) ) → 𝜑 ) |
19 |
|
simp1r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑣 ∈ 𝐴 ) ∧ ( ( 𝑣 ≠ 𝐷 ∧ ( abs ‘ ( 𝑣 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐶 ) ) < 𝑦 ) ∧ ( 𝑣 ≠ 𝐷 ∧ ( abs ‘ ( 𝑣 − 𝐷 ) ) < 𝑤 ) ) → 𝑣 ∈ 𝐴 ) |
20 |
|
simp3 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑣 ∈ 𝐴 ) ∧ ( ( 𝑣 ≠ 𝐷 ∧ ( abs ‘ ( 𝑣 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐶 ) ) < 𝑦 ) ∧ ( 𝑣 ≠ 𝐷 ∧ ( abs ‘ ( 𝑣 − 𝐷 ) ) < 𝑤 ) ) → ( 𝑣 ≠ 𝐷 ∧ ( abs ‘ ( 𝑣 − 𝐷 ) ) < 𝑤 ) ) |
21 |
|
simp2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑣 ∈ 𝐴 ) ∧ ( ( 𝑣 ≠ 𝐷 ∧ ( abs ‘ ( 𝑣 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐶 ) ) < 𝑦 ) ∧ ( 𝑣 ≠ 𝐷 ∧ ( abs ‘ ( 𝑣 − 𝐷 ) ) < 𝑤 ) ) → ( ( 𝑣 ≠ 𝐷 ∧ ( abs ‘ ( 𝑣 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐶 ) ) < 𝑦 ) ) |
22 |
20 21
|
mpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑣 ∈ 𝐴 ) ∧ ( ( 𝑣 ≠ 𝐷 ∧ ( abs ‘ ( 𝑣 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐶 ) ) < 𝑦 ) ∧ ( 𝑣 ≠ 𝐷 ∧ ( abs ‘ ( 𝑣 − 𝐷 ) ) < 𝑤 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐶 ) ) < 𝑦 ) |
23 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) |
24 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) |
25 |
2 24
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐺 |
26 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑣 |
27 |
25 26
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐺 ‘ 𝑣 ) |
28 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
29 |
1 28
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐹 |
30 |
29 26
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑣 ) |
31 |
30
|
nfneg |
⊢ Ⅎ 𝑥 - ( 𝐹 ‘ 𝑣 ) |
32 |
27 31
|
nfeq |
⊢ Ⅎ 𝑥 ( 𝐺 ‘ 𝑣 ) = - ( 𝐹 ‘ 𝑣 ) |
33 |
23 32
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑣 ) = - ( 𝐹 ‘ 𝑣 ) ) |
34 |
|
eleq1w |
⊢ ( 𝑥 = 𝑣 → ( 𝑥 ∈ 𝐴 ↔ 𝑣 ∈ 𝐴 ) ) |
35 |
34
|
anbi2d |
⊢ ( 𝑥 = 𝑣 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) ) ) |
36 |
|
fveq2 |
⊢ ( 𝑥 = 𝑣 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑣 ) ) |
37 |
|
fveq2 |
⊢ ( 𝑥 = 𝑣 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑣 ) ) |
38 |
37
|
negeqd |
⊢ ( 𝑥 = 𝑣 → - ( 𝐹 ‘ 𝑥 ) = - ( 𝐹 ‘ 𝑣 ) ) |
39 |
36 38
|
eqeq12d |
⊢ ( 𝑥 = 𝑣 → ( ( 𝐺 ‘ 𝑥 ) = - ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐺 ‘ 𝑣 ) = - ( 𝐹 ‘ 𝑣 ) ) ) |
40 |
35 39
|
imbi12d |
⊢ ( 𝑥 = 𝑣 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = - ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑣 ) = - ( 𝐹 ‘ 𝑣 ) ) ) ) |
41 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
42 |
3
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℂ ) |
43 |
2
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ - 𝐵 ∈ ℂ ) → ( 𝐺 ‘ 𝑥 ) = - 𝐵 ) |
44 |
41 42 43
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = - 𝐵 ) |
45 |
1
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℂ ) → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
46 |
41 3 45
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
47 |
46
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( 𝐹 ‘ 𝑥 ) = - 𝐵 ) |
48 |
44 47
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = - ( 𝐹 ‘ 𝑥 ) ) |
49 |
33 40 48
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑣 ) = - ( 𝐹 ‘ 𝑣 ) ) |
50 |
49
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑣 ) − - 𝐶 ) = ( - ( 𝐹 ‘ 𝑣 ) − - 𝐶 ) ) |
51 |
8
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑣 ) ∈ ℂ ) |
52 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
53 |
51 52
|
negsubdi3d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → - ( ( 𝐹 ‘ 𝑣 ) − 𝐶 ) = ( - ( 𝐹 ‘ 𝑣 ) − - 𝐶 ) ) |
54 |
50 53
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑣 ) − - 𝐶 ) = - ( ( 𝐹 ‘ 𝑣 ) − 𝐶 ) ) |
55 |
54
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑣 ) − - 𝐶 ) ) = ( abs ‘ - ( ( 𝐹 ‘ 𝑣 ) − 𝐶 ) ) ) |
56 |
51 52
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑣 ) − 𝐶 ) ∈ ℂ ) |
57 |
56
|
absnegd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( abs ‘ - ( ( 𝐹 ‘ 𝑣 ) − 𝐶 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐶 ) ) ) |
58 |
55 57
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑣 ) − - 𝐶 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐶 ) ) ) |
59 |
58
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐶 ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑣 ) − - 𝐶 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐶 ) ) ) |
60 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐶 ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐶 ) ) < 𝑦 ) |
61 |
59 60
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐶 ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑣 ) − - 𝐶 ) ) < 𝑦 ) |
62 |
18 19 22 61
|
syl21anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑣 ∈ 𝐴 ) ∧ ( ( 𝑣 ≠ 𝐷 ∧ ( abs ‘ ( 𝑣 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐶 ) ) < 𝑦 ) ∧ ( 𝑣 ≠ 𝐷 ∧ ( abs ‘ ( 𝑣 − 𝐷 ) ) < 𝑤 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑣 ) − - 𝐶 ) ) < 𝑦 ) |
63 |
62
|
3exp |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑣 ∈ 𝐴 ) → ( ( ( 𝑣 ≠ 𝐷 ∧ ( abs ‘ ( 𝑣 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐶 ) ) < 𝑦 ) → ( ( 𝑣 ≠ 𝐷 ∧ ( abs ‘ ( 𝑣 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑣 ) − - 𝐶 ) ) < 𝑦 ) ) ) |
64 |
63
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℝ+ ) → ( ∀ 𝑣 ∈ 𝐴 ( ( 𝑣 ≠ 𝐷 ∧ ( abs ‘ ( 𝑣 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐶 ) ) < 𝑦 ) → ∀ 𝑣 ∈ 𝐴 ( ( 𝑣 ≠ 𝐷 ∧ ( abs ‘ ( 𝑣 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑣 ) − - 𝐶 ) ) < 𝑦 ) ) ) |
65 |
64
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ 𝐴 ( ( 𝑣 ≠ 𝐷 ∧ ( abs ‘ ( 𝑣 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐶 ) ) < 𝑦 ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ 𝐴 ( ( 𝑣 ≠ 𝐷 ∧ ( abs ‘ ( 𝑣 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑣 ) − - 𝐶 ) ) < 𝑦 ) ) ) |
66 |
16 65
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ 𝐴 ( ( 𝑣 ≠ 𝐷 ∧ ( abs ‘ ( 𝑣 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑣 ) − - 𝐶 ) ) < 𝑦 ) ) |
67 |
66
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ 𝐴 ( ( 𝑣 ≠ 𝐷 ∧ ( abs ‘ ( 𝑣 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑣 ) − - 𝐶 ) ) < 𝑦 ) ) |
68 |
42 2
|
fmptd |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ ℂ ) |
69 |
68 9 12
|
ellimc3 |
⊢ ( 𝜑 → ( - 𝐶 ∈ ( 𝐺 limℂ 𝐷 ) ↔ ( - 𝐶 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ 𝐴 ( ( 𝑣 ≠ 𝐷 ∧ ( abs ‘ ( 𝑣 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑣 ) − - 𝐶 ) ) < 𝑦 ) ) ) ) |
70 |
7 67 69
|
mpbir2and |
⊢ ( 𝜑 → - 𝐶 ∈ ( 𝐺 limℂ 𝐷 ) ) |