Metamath Proof Explorer


Theorem neglt

Description: The negative of a positive number is less than the number itself. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion neglt ( 𝐴 ∈ ℝ+ → - 𝐴 < 𝐴 )

Proof

Step Hyp Ref Expression
1 rpre ( 𝐴 ∈ ℝ+𝐴 ∈ ℝ )
2 1 renegcld ( 𝐴 ∈ ℝ+ → - 𝐴 ∈ ℝ )
3 0red ( 𝐴 ∈ ℝ+ → 0 ∈ ℝ )
4 rpgt0 ( 𝐴 ∈ ℝ+ → 0 < 𝐴 )
5 1 lt0neg2d ( 𝐴 ∈ ℝ+ → ( 0 < 𝐴 ↔ - 𝐴 < 0 ) )
6 4 5 mpbid ( 𝐴 ∈ ℝ+ → - 𝐴 < 0 )
7 2 3 1 6 4 lttrd ( 𝐴 ∈ ℝ+ → - 𝐴 < 𝐴 )