Metamath Proof Explorer
Description: The negative of a positive number is less than the number itself.
(Contributed by Glauco Siliprandi, 11-Dec-2019)
|
|
Ref |
Expression |
|
Assertion |
neglt |
⊢ ( 𝐴 ∈ ℝ+ → - 𝐴 < 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rpre |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
2 |
1
|
renegcld |
⊢ ( 𝐴 ∈ ℝ+ → - 𝐴 ∈ ℝ ) |
3 |
|
0red |
⊢ ( 𝐴 ∈ ℝ+ → 0 ∈ ℝ ) |
4 |
|
rpgt0 |
⊢ ( 𝐴 ∈ ℝ+ → 0 < 𝐴 ) |
5 |
1
|
lt0neg2d |
⊢ ( 𝐴 ∈ ℝ+ → ( 0 < 𝐴 ↔ - 𝐴 < 0 ) ) |
6 |
4 5
|
mpbid |
⊢ ( 𝐴 ∈ ℝ+ → - 𝐴 < 0 ) |
7 |
2 3 1 6 4
|
lttrd |
⊢ ( 𝐴 ∈ ℝ+ → - 𝐴 < 𝐴 ) |