| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rerpdivcl | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( 𝐴  /  𝐵 )  ∈  ℝ )  | 
						
						
							| 2 | 
							
								
							 | 
							recn | 
							⊢ ( ( 𝐴  /  𝐵 )  ∈  ℝ  →  ( 𝐴  /  𝐵 )  ∈  ℂ )  | 
						
						
							| 3 | 
							
								
							 | 
							znegclb | 
							⊢ ( ( 𝐴  /  𝐵 )  ∈  ℂ  →  ( ( 𝐴  /  𝐵 )  ∈  ℤ  ↔  - ( 𝐴  /  𝐵 )  ∈  ℤ ) )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							3syl | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( 𝐴  /  𝐵 )  ∈  ℤ  ↔  - ( 𝐴  /  𝐵 )  ∈  ℤ ) )  | 
						
						
							| 5 | 
							
								
							 | 
							recn | 
							⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  𝐴  ∈  ℂ )  | 
						
						
							| 7 | 
							
								
							 | 
							rpcn | 
							⊢ ( 𝐵  ∈  ℝ+  →  𝐵  ∈  ℂ )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  𝐵  ∈  ℂ )  | 
						
						
							| 9 | 
							
								
							 | 
							rpne0 | 
							⊢ ( 𝐵  ∈  ℝ+  →  𝐵  ≠  0 )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  𝐵  ≠  0 )  | 
						
						
							| 11 | 
							
								6 8 10
							 | 
							divnegd | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  - ( 𝐴  /  𝐵 )  =  ( - 𝐴  /  𝐵 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							eleq1d | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( - ( 𝐴  /  𝐵 )  ∈  ℤ  ↔  ( - 𝐴  /  𝐵 )  ∈  ℤ ) )  | 
						
						
							| 13 | 
							
								4 12
							 | 
							bitrd | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( 𝐴  /  𝐵 )  ∈  ℤ  ↔  ( - 𝐴  /  𝐵 )  ∈  ℤ ) )  | 
						
						
							| 14 | 
							
								
							 | 
							mod0 | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( 𝐴  mod  𝐵 )  =  0  ↔  ( 𝐴  /  𝐵 )  ∈  ℤ ) )  | 
						
						
							| 15 | 
							
								
							 | 
							renegcl | 
							⊢ ( 𝐴  ∈  ℝ  →  - 𝐴  ∈  ℝ )  | 
						
						
							| 16 | 
							
								
							 | 
							mod0 | 
							⊢ ( ( - 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( - 𝐴  mod  𝐵 )  =  0  ↔  ( - 𝐴  /  𝐵 )  ∈  ℤ ) )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							sylan | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( - 𝐴  mod  𝐵 )  =  0  ↔  ( - 𝐴  /  𝐵 )  ∈  ℤ ) )  | 
						
						
							| 18 | 
							
								13 14 17
							 | 
							3bitr4d | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( 𝐴  mod  𝐵 )  =  0  ↔  ( - 𝐴  mod  𝐵 )  =  0 ) )  |