Step |
Hyp |
Ref |
Expression |
1 |
|
rerpdivcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
2 |
|
recn |
⊢ ( ( 𝐴 / 𝐵 ) ∈ ℝ → ( 𝐴 / 𝐵 ) ∈ ℂ ) |
3 |
|
znegclb |
⊢ ( ( 𝐴 / 𝐵 ) ∈ ℂ → ( ( 𝐴 / 𝐵 ) ∈ ℤ ↔ - ( 𝐴 / 𝐵 ) ∈ ℤ ) ) |
4 |
1 2 3
|
3syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 / 𝐵 ) ∈ ℤ ↔ - ( 𝐴 / 𝐵 ) ∈ ℤ ) ) |
5 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
7 |
|
rpcn |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ ) |
8 |
7
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℂ ) |
9 |
|
rpne0 |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ≠ 0 ) |
10 |
9
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ≠ 0 ) |
11 |
6 8 10
|
divnegd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → - ( 𝐴 / 𝐵 ) = ( - 𝐴 / 𝐵 ) ) |
12 |
11
|
eleq1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( - ( 𝐴 / 𝐵 ) ∈ ℤ ↔ ( - 𝐴 / 𝐵 ) ∈ ℤ ) ) |
13 |
4 12
|
bitrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 / 𝐵 ) ∈ ℤ ↔ ( - 𝐴 / 𝐵 ) ∈ ℤ ) ) |
14 |
|
mod0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) = 0 ↔ ( 𝐴 / 𝐵 ) ∈ ℤ ) ) |
15 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
16 |
|
mod0 |
⊢ ( ( - 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( - 𝐴 mod 𝐵 ) = 0 ↔ ( - 𝐴 / 𝐵 ) ∈ ℤ ) ) |
17 |
15 16
|
sylan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( - 𝐴 mod 𝐵 ) = 0 ↔ ( - 𝐴 / 𝐵 ) ∈ ℤ ) ) |
18 |
13 14 17
|
3bitr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) = 0 ↔ ( - 𝐴 mod 𝐵 ) = 0 ) ) |