Metamath Proof Explorer


Theorem negne0bd

Description: A number is nonzero iff its negative is nonzero. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypothesis negidd.1 ( 𝜑𝐴 ∈ ℂ )
Assertion negne0bd ( 𝜑 → ( 𝐴 ≠ 0 ↔ - 𝐴 ≠ 0 ) )

Proof

Step Hyp Ref Expression
1 negidd.1 ( 𝜑𝐴 ∈ ℂ )
2 1 negeq0d ( 𝜑 → ( 𝐴 = 0 ↔ - 𝐴 = 0 ) )
3 2 necon3bid ( 𝜑 → ( 𝐴 ≠ 0 ↔ - 𝐴 ≠ 0 ) )