Description: A number is nonzero iff its negative is nonzero. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | negidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
Assertion | negne0bd | ⊢ ( 𝜑 → ( 𝐴 ≠ 0 ↔ - 𝐴 ≠ 0 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
2 | 1 | negeq0d | ⊢ ( 𝜑 → ( 𝐴 = 0 ↔ - 𝐴 = 0 ) ) |
3 | 2 | necon3bid | ⊢ ( 𝜑 → ( 𝐴 ≠ 0 ↔ - 𝐴 ≠ 0 ) ) |