Metamath Proof Explorer


Theorem negne0bi

Description: A number is nonzero iff its negative is nonzero. (Contributed by NM, 10-Aug-1999)

Ref Expression
Hypothesis negidi.1 𝐴 ∈ ℂ
Assertion negne0bi ( 𝐴 ≠ 0 ↔ - 𝐴 ≠ 0 )

Proof

Step Hyp Ref Expression
1 negidi.1 𝐴 ∈ ℂ
2 negeq0 ( 𝐴 ∈ ℂ → ( 𝐴 = 0 ↔ - 𝐴 = 0 ) )
3 1 2 ax-mp ( 𝐴 = 0 ↔ - 𝐴 = 0 )
4 3 necon3bii ( 𝐴 ≠ 0 ↔ - 𝐴 ≠ 0 )