Metamath Proof Explorer


Theorem negne0i

Description: The negative of a nonzero number is nonzero. (Contributed by NM, 30-Jul-2004)

Ref Expression
Hypotheses negidi.1 𝐴 ∈ ℂ
negne0i.2 𝐴 ≠ 0
Assertion negne0i - 𝐴 ≠ 0

Proof

Step Hyp Ref Expression
1 negidi.1 𝐴 ∈ ℂ
2 negne0i.2 𝐴 ≠ 0
3 1 negne0bi ( 𝐴 ≠ 0 ↔ - 𝐴 ≠ 0 )
4 2 3 mpbi - 𝐴 ≠ 0