Metamath Proof Explorer
		
		
		
		Description:  If two complex numbers are unequal, so are their negatives.
         Contrapositive of neg11d .  (Contributed by David Moews, 28-Feb-2017)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | negidd.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
					
						|  |  | negned.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
					
						|  |  | negned.3 | ⊢ ( 𝜑  →  𝐴  ≠  𝐵 ) | 
				
					|  | Assertion | negned | ⊢  ( 𝜑  →  - 𝐴  ≠  - 𝐵 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negidd.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | negned.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | negned.3 | ⊢ ( 𝜑  →  𝐴  ≠  𝐵 ) | 
						
							| 4 | 1 2 | neg11ad | ⊢ ( 𝜑  →  ( - 𝐴  =  - 𝐵  ↔  𝐴  =  𝐵 ) ) | 
						
							| 5 | 4 | necon3bid | ⊢ ( 𝜑  →  ( - 𝐴  ≠  - 𝐵  ↔  𝐴  ≠  𝐵 ) ) | 
						
							| 6 | 3 5 | mpbird | ⊢ ( 𝜑  →  - 𝐴  ≠  - 𝐵 ) |